
Princeton University
COS 217: Introduction to Programming Systems

C Symbolic Constants

Approach 1: Macros

Example

int main(void)
{
 #define START_STATE 0
 #define POSSIBLE_COMMENT_STATE 1
 #define COMMENT_STATE 2
 ...
 int iState;
 ...
 iState = START_STATE;
 ...
}

Terminology
START_STATE, POSSIBLE_COMMENT_STATE, and COMMENT_STATE are
macros.

Strengths
Preprocessor does substitutions only for tokens.

int iSTART_STATE; /* No substitution. */

Preprocessor does not do substitutions within string literals.
printf("What is the START_STATE?\n"); /* No substitution. */

Simple textual substitution; works for any type of data.
#define PI 3.14159

Weaknesses
Preprocessor does not respect context.

int START_STATE;

After preprocessing, becomes:
int 0; /* Compiletime error. */

Convention: Use all uppercase letters to reduce probability of unintended
replacement.

Preprocessor does not respect scope.

Preprocessor replaces START_STATE with 0 from point of #define to end
of file, not to end of function. Could affect subsequent functions
unintentionally.

Convention: Place #defines at beginning of file, not within function
definitions

Page 1 of 4

Approach 2: Constant Variables

Example

int main(void)
{
 const int START_STATE = 0;
 const int POSSIBLE_COMMENT_STATE = 1;
 const int COMMENT_STATE = 2;
 ...
 ...
 int iState;
 ...
 iState = START_STATE;
 ...
 iState = COMMENT_STATE;
 ...
}

Strengths

Works for any type of data.

const double PI = 3.14159;

Handled by compiler; compiler respects context and scope.

Weaknesses

Does not work for array lengths (unlike C++).

const int ARRAY_LENGTH = 10;
...
int aiNumbers[ARRAY_LENGTH]; /* Compile-time error */

Page 2 of 4

Approach 3: Enumerations

Example
int main(void)
{
 enum State {START_STATE, POSSIBLE_COMMENT_STATE, COMMENT_STATE, ...};
 enum State eState;
 ...
 eState = START_STATE;
 ...
 eState = COMMENT_STATE;
 ...
}

Terminology
enum State is an enumeration type.
START_STATE, POSSIBLE_COMMENT_STATE, … are enumeration constants.
eState is an enumeration; it is of type enum State.

Notes
Enumeration constants are interchangeable with type int.

eState = 0; /* Can assign int to an enumeration. */

i = START_STATE; /* Can assign an enumeration constant to an int.
 START_STATE is an alias for 0, POSSIBLE_COMMENT_STATE
 is an alias for 1, etc. */

Strengths
Can explicitly specify values for enumeration constants.

enum State {START_STATE = 5,
 POSSIBLE_COMMENT_STATE = 3,
 COMMENT_STATE = 4,
 ...};

Can define an anonymous enumeration type, thus effectively giving symbolic
names to int literals.

enum {MAX_VALUE = 9999};
...
int i;
...
i = MAX_VALUE;
...

Works when specifying array lengths.

enum {ARRAY_LENGTH = 10};
...
int aiNumbers[ARRAY_LENGTH];
...

Weakness
Works for only literals of integral types (char, short, int, long, and
unsigned variants thereof)

enum {PI = 3.14159}; /* Compile-time error */

Page 3 of 4

Style Rules (see Kernighan and Pike Chapter 1)

(1) Use enumerations to give symbolic names to literals of integral types (char,
short, int, long, and unsigned variants thereof).

(2) Use constant variables to give symbolic names to literals of non-integral types
(float, double, long double, and string).

(3) Avoid using macros to give symbolic names to literals.

Copyright © 2016 by Robert M. Dondero, Jr.

Page 4 of 4

