
Program Verification
and

Ethics of Performance Tuning

Aarti Gupta

Acknowledgements:

Andrew Appel, Ethics of Extreme Performance Tuning

1

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)

Reasoning about programs

Ethics of performance tuning

2

Famous Bugs

The first bug: A moth in a relay (1945)
At the Smithsonian (currently not on display)

(in)Famous Bugs

• Safety-critical systems

Therac-25 medical radiation device (1985)
At least 5 deaths attributed to a race condition in software

(in)famous bugs

• mission-critical systems

Ariane-5 self-destruction (1995)
SW interface issue, backup failed
cost: $400M payload

the Northeast Blackout (2003)
race condition in power control software
cost: $4B

(in)famous bugs

• commodity hardware / software

heartbleed (2014)

Pentium bug (1994)
float computation errors
cost: $475M

Code Red worm on MS IIS server (2001)
buffer overflow exploited by worm
Infected 359k servers
cost: >$2B

Common Bugs

• Runtime bugs
• Null pointer dereference (access via a pointer that is Null)
• Array buffer overflow (out of bound index)

• Can lead to security vulnerabilities
• Uninitialized variable
• Division by 0

• Concurrency bugs
• Race condition (flaw in accessing a shared resource)
• Deadlock (no process can make progress)

• Functional correctness bugs
• Input-output relationships
• Interface properties
• Data structure invariants
• …

8

Program Verification

Ideally: Prove that any given program is correct

General
Program
Checkerprogram.c

Right or Wrong
Specification

?
In general: Undecidable

This lecture: For some (kinds of) properties, a Program Verifier
can provide a proof (if right) or a counterexample (if wrong)

9

Program Testing (Lecture 6)

Pragmatically: Convince yourself that a specific
program probably works

“Program testing can be quite effective for showing the presence
of bugs, but is hopelessly inadequate for showing their absence.”

‒ Edsger Dijkstra

Specific
Testing

Strategyprogram.c

Probably Right
or

Certainly Wrong

Specification

10

Path Testing Example (Lecture 6)
Example pseudocode:

• Simple programs => maybe reasonable
• Complex program => combinatorial explosion!!!

• Path test code fragments

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Path testing:

Should make sure all logical
paths are executed

How many passes
through code are
required?

Four paths for four combinations of
(condition1, condition 2): TT, TF, FT, FF

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)

Reasoning about programs

Ethics of performance tuning

11

Reasoning about Programs

• Try out the program, say for x=3
• At line 4, before executing the loop: x=3, y=1, z=0
• Since z != x, we will execute the while loop
• At line 4, after 1st iteration of loop: x=3, z=1, y=1
• At line 4, after 2nd iteration of loop: x=3, z=2, y=2
• At line 4, after 3rd iteration of loop: x=3, z=3, y=6
• Since z == x, exit loop, return 6: It works!

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example:
factorial program

Check:
If x >= 0, then y = fac(x)
(fac is the mathematical function)

Reasoning about Programs

• Try out the program, say for x=4
• At line 4, before executing the loop: x=4, y=1, z=0
• Since z != x, we will execute the while loop
• At line 4, after 1st iteration of loop: x=4, z=1, y=1
• At line 4, after 2nd iteration of loop: x=4, z=2, y=2
• At line 4, after 3rd iteration of loop: x=4, z=3, y=6
• At line 4, after 4th iteration of loop: x=4, z=4, y=24
• Since z == x, exit loop, return 24: It works!

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

Reasoning about Programs

• Try out the program, say for x=1000
• At line 4, before executing the loop: x=1000, y=1, z=0
• Since z != x, we will execute the while loop
• At line 4, after 1st iteration of loop: x=1000, z=1, y=1
• At line 4, after 2nd iteration of loop: x=1000, z=2, y=2
• At line 4, after 3rd iteration of loop: x=1000, z=3, y=6
• At line 4, after 4th iteration of loop: x=1000, z=4, y=24 …

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Want to keep going on???

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

Lets try some mathematics …

• Annotate the program with assertions [Floyd 67]
• Assertions (at program lines) are expressed as (logic) formulas

• Here, we will use standard arithmetic
• Meaning: Assertion is true before that line is executed

• E.g., at line 3, assertion y=1 is true

• For loops, we will use an assertion called a loop invariant
• Invariant means that the assertion is true in each iteration of loop

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

Loop Invariant

• Loop invariant (assertion at line 4): y = fac(z)

• Try to prove by induction that the loop invariant holds

• Use induction over n, the number of loop iterations

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

Aside: Mathematical Induction
Example:

• Prove that sum of first n natural numbers = n * (n+1) / 2

Solution: Proof by induction
• Base case: Prove the claim for n=1

• LHS = 1, RHS = 1 * 2 / 2 = 1, claim is true for n=1
• Inductive hypothesis: Assume that claim is true for n=k

• i.e., 1 + 2 + 3 + … k = k * (k+1) / 2
• Induction step: Now prove that the claim is true for n=k+1

• i.e., 1 + 2 + 3 + … k + (k+1) = (k+1) * (k+2) / 2
LHS = 1 + 2 + 3 + ... k + (k+1)
= (k * (k+1))/2 + (k+1) … by using the inductive hypothesis
= (k * (k+1))/2 + 2*(k+1)/2
= ((k+2) * (k+1)) / 2
= RHS

• Therefore, claim is true for all n

Loop Invariant

• Loop invariant (assertion at line 4): y = fac(z)

• Try to prove by induction that the loop invariant holds
• Base case: First time at line 4, z=0, y=1, fac(0)=1, y=fac(z) holds √
• Induction hypothesis: Assume that y = fac(z) at line 4
• Induction step: In next iteration of the loop (when z!=x)

• z’ = z+1 and y’= fac(z)*z+1 = fac(z’) (z’/y’ denote updated values)
• Therefore, at line 4, y’=fac(z’), i.e., loop invariant holds again √

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

Proof of Correctness

• We have proved the loop invariant (assertion at line 4): y = fac(z) √

• What should we do now?
• Case analysis on loop condition
• If loop condition is true, i.e., if (z!=x), execute loop again, y=fac(z)
• If loop condition is false, i.e., if (z==x), exit the loop

• At line 8, we have y=fac(z) AND z==x, i.e., y=fac(x)
• Thus, at return, y = fac(x)

• Proof of correctness of the factorial program is now done √

1 int factorial(int x) {
2 int y = 1;
3 int z = 0;
4 while (z != x) {
5 z = z + 1;
6 y = y * z;
7 }
8 return y;
9 }

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

Program Verification
• Rich history in computer science
• Assigning Meaning to Programs [Floyd, 1967]

• Program is annotated with assertions (formulas in logic)
• Program is proved correct by reasoning about assertions

• An Axiomatic Basis for Computer Programming [Hoare, 1969]
• Hoare Triple: {P} S {Q}
• Meaning: If S executes from a state where P is true,

and if S terminates, then Q is true in the resulting state
• For our example: {x >= 0} y = factorial(x); {y = fac(x)}

Turing Award 1978

Turing Award 1980

Program Verification
• Proof Systems

• Perform reasoning using logic formulas and rules of inference

• Hoare Logic [Hoare 69]
• Inference rules for assignments, conditionals, loops, sequence
• Given a program annotated with preconditions, postconditions, and

loop invariants
• Generate Verification Conditions (VCs) automatically
• If each VC is “valid”, then program is correct
• Validity of VC can be checked by a theorem-prover

• Question: Can these preconditions/postconditions/loop
invariants be generated automatically?

Automatic Program Verification

• Question: Can these preconditions/postconditions/loop
invariants be generated automatically?

• Answer: Yes! (in many cases)

• Techniques for deriving the assertions automatically
• Model checkers: based on exploring “states” of programs
• Static analyzers: based on program analysis using “abstractions” of

programs
• … many other techniques

• Still an active area of research (after more than 45 years)!

Model Checking

• Temporal logic
• Used for specifying correctness properties
• [Pnueli, 1977]

• Model checking
• Verifying temporal logic properties by state space exploration
• [Clarke & Emerson, 1981] and [Queille & Sifakis, 1981]

Turing Award 1996

Turing Award 2007

F-Soft
1: void pivot_sort(int A[], int n){
2: int pivot=A[0], low=0, high=n;
3: while (low < high) {
4: do {
5: low++ ;
6: } while (A[low] <= pivot) ;
7: do {
8: high - - ;
9: } while (A[high] >= pivot);

10: swap(&A[low],&A[high]);
11: }
12: }

Array Buffer Overflow?

Line 1: n=2, A[0]=10, A[1]=10
Line 2: pivot=10, low=0, high=2

Line 5: low = 1
Line 6: A[low] <= pivot ? YES

Line 3: low < high ? YES

Line 5: low = 2
Line 6: A[low] <= pivot ?

Buffer Overflow!!!

counterexample trace

F-Soft Model Checker
Automatic tool for finding bugs in large C/C++ programs (NEC)

Summary
• Program verification

• Provide proofs of correctness for programs
• Testing cannot provide proofs of correctness (unless exhaustive)

• Proof systems based on logic
• Users annotate the program with assertions (formulas in logic)
• Theorem-provers: user-guided proofs of correctness
• Automatic verification: automate the search

Active area of research!
COS 516 in Fall ’17: Automatic Reasoning about Software

COS 510 in Spring ’18: Programming Languages

26

Cat-and-mouse
regarding

the buffer overrun problem

Niklaus Wirth designs Pascal language,

with supposedly ironclad array-bounds checking.

Turing award 1984

1972

27Turing award 1980

1978

Robin Milner designs ML programming language, with
provably secure type-checking.

28

Turing award 1991

1988
Everything is still written in C . . .

Robert T. Morris, graduate student at Cornell, exploits buffer
overruns in Internet hosts (sendmail, finger, rsh) to bring
down the entire Internet.

29

. . . became the first person convicted under the
then-new Computer Fraud and Abuse Act.

(400 hours community service. Now an MIT prof.)

30

Buffer overrun
% a.out

What is your name?

abcdefghijkl????executable-machine-code...

How may I serve you, master?

%

Cleverly malicious?
Maliciously clever?

#include <stdio.h>
int main(int argc, char **argv) {
char name[12]; int i;
printf("What is your name?\n");
for (i=0; ; i++) {

int c = getchar();
if (c=='\n' || c ==EOF) break;
name[i] = c;

}
name[i]='\0';
printf("Thank you, %s.\n", name);
return 0;

}

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

1990s
Everything is still written in C . . .

Buffer overrun attacks proliferate like crazy

“Solution:”

Every time the OS “execvp”s a new process,

randomize the address of the base of the stack.

That way, code-injection attacks can’t predict what address
to jump to!

31

32

Buffer overrun with random stack-start
% a.out

What is your name?

abcdefghijkl????executable-machine-code...

How may I serve you, master?

%

#include <stdio.h>
int main(int argc, char **argv) {
char name[12]; int i;
printf("What is your name?\n");
for (i=0; ; i++) {

int c = getchar();
if (c=='\n' || c ==EOF) break;
name[i] = c;

}
name[i]='\0';
printf("Thank you, %s.\n", name);
return 0;

}

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

Randomize
this location

Therefore, this address
can’t be predicted

The nop-sled attack

“Solution:” Every time the OS “execvp”s a new process,

randomize the address of the base of the stack.

That way, code-injection attacks can’t predict what

address to jump to!

3333

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

How may I serve you, master?

%

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop

“Solution:” hardware permissions

“Solution:” In the virtual memory system, mark the stack

region “no-execute”

(required inventing new hardware mechanism!)

3434

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

Segmentation violation

%RSP

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nopBUT:

(1) doesn’t protect against return-to-libc attacks (such as
the “B” version of homework 5

(2) doesn’t protect against code injection into the heap
(such as the “A” version of homework 5)

“Solution:” more hardware permissions
“Solution:” In the virtual memory system, mark the BSS

region “no-execute.”

This DOES protect against the “A” version of homework 5

(and we had to specifically disable this protection to allow
you to have your fun)

3535

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

Segmentation violation

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nopBUT:

(1) doesn’t protect against return-to-libc attacks (such as
the “B” version of homework 5

“Solution:” canary values
“Solution:” Check whether the canary has been overwritten,

just before returning from the function.

This DOES protect against the “A” version of homework 5

This DOES protect against return-to-libc attacks

3636

% a.out

What is your name?

abcdefghijkl????nop nop nop nop nop nop executable-machine-code...

Stackguard detected an attack, execution terminated

executable
machine
code

a b c d

he f g

j k li

10

old %RSP
? ? ??Saved RIP

nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nop
nop nop nopBUT:

(1) There are still ways to defeat it

(2) Costs overhead, never much caught on

canary

Heartbeat

37

Component of OpenSSL

Used across the Internet

http://xkcd.com/1354/

38

Bug in OpenSSL

If strlen() doesn’t match
given length . . .

buffer overrun

HeartBleed

39http://xkcd.com/1354/

Consequence:
Read up to 64 kilobytes from your
OS address space, send it to attacker.

If those happen to contain crypto keys
or other secret info, you’re hacked!

First Internet bug report
with:
• catchy name,
• logo
• web site

Those protections don’t work against
HeartBleed

40

Stack randomization: doesn’t protect.
Stack no-execute: doesn’t protect
BSS no-execute: doesn’t protect
Canary: doesn’t protect

Heartbleed is a buffer-overrun
vulnerability, but it’s a “read-only” attack!

It’s not code-injection, it’s not
return-to-libc.

“Solution:” adjust C with
array-bounds checks
There have been a dozen or more language designs like

this. None have ever caught on. The problem is, then
it’s really not C any more.

4141

“Solution:” Java, C#, etc.

Type-safe languages with array-bounds
checking and garbage collection . . .

4242

Actually, that is the solution.

Language choice as an ethical issue?

From a software engineering ethics point of view:

If you deliberately choose an unsafe programming
language, there had better be a justified reason.

If you carelessly choose an unsafe programming
language, then you’re being unethical.

43

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)

Reasoning about programs

Ethics of performance tuning

44

45

Tune your program (1950-2050)
samples % image name app name symbol name
20871 75.8807 libc-2.17.so buzz1 __strcmp_sse42
5732 20.8398 buzz1 buzz1 SymTable_get
257 0.9344 buzz1 buzz1 SymTable_put
256 0.9307 buzz1 buzz1 sortCounts
105 0.3817 buzz1 buzz1 readWord
92 0.3345 no-vmlinux buzz1 /no-vmlinux
75 0.2727 libc-2.17.so buzz1 fgetc
73 0.2654 libc-2.17.so buzz1 __strlen_sse2_pminub
10 0.0364 buzz1 buzz1 readInput
9 0.0327 libc-2.17.so buzz1 __ctype_tolower_loc
8 0.0291 libc-2.17.so buzz1 _int_malloc
3 0.0109 libc-2.17.so buzz1 __ctype_b_loc
3 0.0109 libc-2.17.so buzz1 malloc
2 0.0073 libc-2.17.so buzz1 __strcpy_sse2_unaligned
1 0.0036 buzz1 buzz1 SymTable_map
1 0.0036 ld-2.17.so time bsearch
1 0.0036 libc-2.17.so buzz1 malloc_consolidate
1 0.0036 libc-2.17.so buzz1 strcpy
1 0.0036 libc-2.17.so time __write_nocancel

Name of
the function

Name of
the executable

program

Name of
the running

program

Name of
the binary
executable

% of execution
time spent in
this function

46

illegally installed software

General principle of
extreme performance tuning

In the test harness

Run the NOx trap

(uses more gas,

wears out the

NOx trap)

Not in the test harness

Turn off the

NOx trap

(great gas mileage,

but unfortunately,

40x more nitrous-
oxide pollution)

47

Steering
wheel never moves?

Real-life NJ DMV test harness

48

New style (in many states) DMV emissions testing
for cars made since 1996

How the test harness works

49

Are you
polluting?

Nope.

OK, cool.

Programming challenge
Write a program that cheats on this test:

50

Are you
polluting?

Nope.

OK, cool.

Solution:

printf(“Nope.”);

Obviously trivial! Therefore we rely on law and ethics
to prevent this cheating.

51

What if you didn’t cheat
on purpose?

The Internet of Things

52

53

October 21, 2016

The Internet of Things
Manufacturer A sells a
“thing” (wifi router,
toaster, thermostat, baby
monitor, coffee maker,
fitbit, football helmet, ...)
for $50,

. . . full of security
vulnerabilities (buffer
overruns, SQL injection,
etc ...)

Manufacturer B pays
their engineers to spend
a few more days, be a
bit more careful, sells the
“thing” for $51.

54

The Internet of Things

55

49.99 50.99

Consumer can’t tell the difference,
might as well buy the cheaper one

56

Hack a million devices,
gain a million DDOS nodes

Server

Does carelessness pay?

Fixing the “IoT security problem” is an open problem, from a
regulatory point of view.

From a software engineering ethics point of view:

Your bug may harm the entire Internet.

Don’t make and sell stupidly insecure devices!

57

The Rest of the Course

Assignment 7
• Due on Dean’s Date (May 16) at 5 PM
• Cannot submit past 11:59 PM
• Can use late pass (but only until 11:59 PM)

Office hours and exam prep sessions
• Will be announced on Piazza

Final exam
• When: Friday 5/19, 1:30 PM – 4:30 PM
• Where: Friend Center 101
• Closed book, closed notes, no electronic devices

58

Course Summary
We have covered:

Programming in the large
• The C programming language
• Testing
• Building
• Debugging
• Program & programming style
• Data structures
• Modularity
• Performance

59

Course Summary

We have covered (cont.):

Under the hood
• Number systems
• Language levels tour

• Assembly language
• Machine language
• Assemblers and linkers

• Service levels tour
• Exceptions and processes
• Storage management
• Dynamic memory management
• Process management
• I/O management
• Signals

60

Thank you!

