()

Agenda

Famous bugs

Common bugs

Testing (from lecture 6)
Reasoning about programs

Ethics of performance tuning

Famous Bugs

()
Program Verification
and
Ethics of Performance Tuning
Aarti Gupta
Acknowledgements:
Andrew Appel, Ethics of Extreme Performance Tuning
Y
()

f N
(in)Famous Bugs l

s e dasiyl
Jde PO W N
U T v
3038 nr.f

Lok
rw‘ G m e T:I»‘;'d ol

Mokl
i 1},3"(&.‘.. <l
v Pdder T

R‘lwl“lo ?.nq |2
&

@t ecly

S g buim fusnl

T Ak
L S S AN)
v ok e

The first bug: A moth in a relay (1945)
At the Smithsonian (currently not on display)

» Safety-critical systems

high current
electron beam
with no target
> lightning'

low current

electron beam
was scanned was tracked
across the field at the target

ag:

Electron Mode X-Ray Mode

tray including the target, a flattening filter, the collimator jaws and an ion
chamber was moved OUT for "electron* mode, and IN for "photon” mode.

high current
electron beam

A

‘THE PROBLEM

Therac-25 medical radiation device (1985)
At least 5 deaths attributed to a race condition in software

-

(in)famous bugs

J

* mission-critical systems

Ariane-5 self-destruction (1995) the Northeast Blackout (2003)

cost: $400M payload cost: $4B

SW interface issue, backup failed race condition in powercontrol software|

J

e N
(in)famous bugs Qg

* commodity hardware / software

Code Red wormon MS IS server (2001)
buffer overflow exploited by worm
Infected 359 servers

cost: >$2B

Pentium bug (1994)

float computation errors
cost: $475M

heartbleed (2014)

512/17

s N
Common Bugs W

¢ Runtime bugs
* Null pointer dereference (access via a pointer that is Null)
« Array buffer overflow (out of bound index)
« Can lead to security vulnerabilities
* Uninitialized variable
« Division by 0

« Concurrency bugs
* Race condition (flaw in accessing a shared resource)
« Deadlock (no process can make progress)

* Functional correctness bugs
* Input-output relationships
« Interface properties
« Data structure invariants

Program Verification

()

Ideally: Prove that any given programis correct

Specification —| General
Program — Right or Wrong

program.c —| Checker

f)

In general: Undecidable

This lecture: For some (kinds of) properties, a Program Verifier
can provide a proof (if right) or a counterexample (if wrong)

e)
Program Testing (Lecture 6) agﬁ

Pragmatically: Convince yourselfthat a specific
program probably works

Probably Right

? or

Specification——| Specific

Testing .
program.c —| girateqy Certainly Wrong

“Program testing can be quite effective for showing the presence
of bugs, but is hopelessly inadequate for showing their absence.”
— Edsger Dikstra

.)
s N
Path Testing Example (Lecture 6) Qg

Example pseudocode:
Path testing:

Should make sure all logical
paths are executed

if (conditionl)
statementl;

else
statement2;

How many passes
through code are
required?

if (condition2)
statement3;

else
statementd;

Four paths for four combinations of
(condition1, condition 2): TT, TF, FT, FF

« Simple programs => maybe reasonable
« Complex program => combinatorial explosion!!!

« Path test code fragments

e N
Agenda

%L;\

Famous bugs

Common bugs

Testing (from lecture 6)
Reasoning about programs

Ethics of performance tuning

N\ 1)
()
Reasoning about Programs ggq

i in_t factorial(int x) { Example:

2 daE g =Sy factorial program

3 int z =0;

4 while (z !'=x) { .

5 z=z + 1; Check:

6 y=y* oz If x >= 0, theny = fac(x)

7 } (fac is the mathematical function)
8 return y;

91}

* Try out the program, say for x=3
« At line 4, before executing theloop: 3, y=1, z=0
« Since z != x, wewill execute the while loop
« At line 4, after 1% iteration of loop: x=3, =1, y=1
At line 4, after 2™ iteration of loop: x=3, z=2, y=2
At line 4, after 3¢ iteration of loop: x=3, z=3, y=6
« Since z == x exit loop, return 6: It works!

512/17

s N
Reasoning about Programs Wg
1 in_t factorial(int x) { Example:
2 inty=1; factorial program
3 int z =0;
4 while (z !'=x) { Check:
e ZZZiiv If x >= 0, then y = fac(x)
y=y*z
7 1}
8 return y;
9}

« Try out the program, say for x=4

« At line 4, before executing theloop: x4, y=1, z=0
« Since z != x, wewill execute the while loop

« At line 4, after 1t iteraion of loop: x4, =1, y=1

« At line 4, after 2 iteration of loop: x=4, z=2, y=2
« At line 4, after 3¢ iteration of loop: x=4, z=3, y=6
« At line 4, after4™ iteration of loop: x=4, z=4, y=24
« Since z == x exit loop, return 24: It works!

=
Reasoning about Programs

in_t factorial(int x) { Example:
inty=1; factorial program
int z =0;
while (z !'=x) { Check:
z

; iy If x >= 0, then y = fac(x)

y
}

return y;

©oNo U WNE

-~

* Try out the program, say for x=1000
« At line 4, before executing theloop: x=1000, y=1, z=0
Since z != x, we will execute the while loop
« At line 4, after 1%t iteration of loop: x=1000, z=1, y=1
« At line 4, after 2 iteration of loop: »=1000, z=2, y=2
At line 4, after 3¢ iteration of loop: x=1000, z=3, y=6
« At line 4, after 4™ iteration of loop: x=100N 7=4 v=24

Want to keep going on???

J
e)
Lets try some mathematics ... &ﬁ
1 int factorial(int x) { Example:
2 inty=1; factorial program
3 int z =0;
4 while (z !'=x) { Check:
2 ; : ; : i' If x >= 0, theny = fac(x)
7}
8 return y;
9 }
* Annotate the program with assertions [Foyd 67]

« Assertions (at program lines) are expressedas (ogic) fomulas
* Here, we will use standard arithmetic

« Meaning: Assertion is true beforethat line is executed
» E.g., at line 3, assertion y=1 istue

» For loops, we will use an assertion called a loop invariant

-

Loop Invariant

1 int factorial(int x) { Example:

2 inty=1; factorial program

3 int z =0; preg

4 while (z !'=x) { Check:

g 2 f z+ 1’: If x >= 0, then y = fac(x)
6 y=y*z

7}

8 return y;

9}

» Loop invariant (assertion at line 4): y = faq(z)
» Try to prove by induction that the loop invariant holds

» Use induction over n, the number of loop iterations

* Invariant means that the assertion is true in eachiteration of loop)
()
Aside: Mathematical Induction 4
Example:

« Prove that sum of first n natural numbers = n* (n+1)/ 2

Solution: Proof by induction
« Base case: Prove the claim for n=1
* LHS =1, RHS = 1*2/2= 1, claim is true for n=1
« Inductive hypothesis: Assume that claim is true for n=k
e ie,1+2+3+ . k=k*(k+1)/2
« Induction step: Now prove that the claim is true for n=k+1
e, 1+2+ 3+ . k+(k+t1)=(kt1)*(k+2)/2
LHS =1+ 2+ 3+ ..k +(k+1)
= (k * (k+1))/2 + (k+1) ... by using the inductive hypothesis
= (k* (k+1))/2 + 2%(k+1)/2
= (k+2) * (k+1) / 2
= RHS
+ Therefore, claim is true for all n

* Loop invariant (assertion at line 4): y = fac(z)

« Try to prove by induction that the loop invariant holds
« Base case: First time at line 4, z=0, y=1, fac(0)=1, y=fac(z) holds v
+ Induction hypothesis: Assume that y = fac(z) at line 4
« Induction step: In next iteration of the loop (when z!=x)
« Z'=z+1andy'= fac(z)z+1 = fac(z)) (z'ly’ derote updaed vales)
« Therefore, at line 4, y'=fac(z)), i.e., loop invariant holds again v

f N
Loop Invariant Bod
i in_t factorial(int x) { Example:
2 inty=1; factorial program
3 int z =0;
4 while (z !'=x) { Check:
2 z _ z : 1’: If x >= 0, then y = fac(x)
Y=y *z
7 1}
8 return y;
9}

512/17

-

Proof of Correctness w§

in_t factorial(int x) { Example:

inty=1; factorial program
int z =0;

1

2

3

4 while (z !'=x) {
5} z

6

7

Check:
=z + 1;
Tew e If x >= 0, then y = fac(x)
}
8 returny;
9}

+ We have proved the loop invariant (assertion at line 4): y = fac(z) V'

* What should we do now?
« Caseanalysison loop candition
If loop condition is true, i.e. if (z=x),execute loop again,y=fac(z)
If loop condition is false, ie., if (z==x), exitthe loop
« Atline 8,we have y=fac(z) ANDz==xi.e. y=fac(x)
+ Thus,atreturn,y =fac(x)

« Proof of correctness of the factorial program is now done v

=
Program Verification

* Rich history in computer science

* Assigning Meaning to Programs [Floyd, 1967]
« Program is annotated with assertions (formulas in logic)
« Program is proved correct by reasoning about assertions

Turing Award 1978

* An Axiomatic Basis for Computer Programming [Hoare, 1969]
* Hoare Triple: {P} S {Q}
* Meaning: If S executes from a state where P is true,
and if S terminates, then Q is true in the resulting state
« For our example: {x >= 0} y = factorial(x); {y = fac(x)}

Turing Award 1980

=
Program Verification &g;

* Proof Systems
» Perform reasoning using logic formulas and rules of inference

* Hoare Logic [Hoare 69]
+ Inference rules for assignments, conditionals, loops, sequence
+ Given a program annotated with preconditions, postconditions, and
loop invariants
* Generate Verification Conditions (VCs) automatically
« If each VC s “valid’, then program is correct
« Validity of VC can be checked by a theorem-prover

* Question: Can these preconditions/postconditions/loop
invariants be generated automatically?

J
()
Model Checking /]
* Temporal logic
« Used for specifying correctness properties
+ [Pnueli, 1977] Turing Award 1996
« Model checking Turing Award 2007
« Verifying temporal logic properties by state space exploration
« [Clarke & Emerson, 1981] and [Queile & Sifakis, 1981]
J

J
()
Automatic Program Verification vg
* Question: Can these preconditions/postconditions/loop
invariants be generated automatically?
» Answer: Yes! (in many cases)
» Techniques for deriving the assertions automatically
* Model checkers: based on exploring “states” of programs
+ Static analyzers: based on program analysis using “abstractions” of
programs
* ... many other techniques
« Still an active area of research (after more than 45 years)!
J
()
F-Soft Model Checker %gg
Automatic tool for finding bugs in large C/C++ programs (NEC)
2: int pivot=A[0], low=0, higtFn; >
3: while (lbw< high) { [F-Soft (— i’\@
4: do {
5 low++; counterexample trace
6: } while (A[low] <=piwt); -
7 dof Line 1:n=2,A[0]=10, A[1]=10
8: high --; Line 2: pivot=10, low=0, high=2
9: } while (A[high] >= pivot); Line 3: low <high? YES
0: swap(&A[low], &A[high)); Line 5: low =1
. 1
1;: - Line 6: Allow] <= piva? YES
_ Line 5:low =2
Line 6: Allow] <= pivat ?
AR SETOTEL S Buffer Overflow!!!
J

512/17

=
Summary w:*

* Program verification
» Provide proofs of correctness for programs
« Testing cannot provide proofs of correctness (unless exhaustive)
* Proof systems based on logic
« Users annotate the program with assertions (formulas in logic)
« Theorem-provers: user-guided proofs of correctness
« Automatic verification: automate the search
Active area of research!
COS 516 in Fall "17: Automatic Reasoning about Software
COS 510 in Spring '18: Programming Languages

=
1972

ot

Niklaus Wirth designs Pascal language,
with sup dly ironclad array-bounds checking.

Turing award 1984

AV e L SRV RIS WL VA D DY

Amibiguiies anu Trecunues i Pisesl

IR o FLOL AT 7 RSP L e,
T - YL A D AR TR TRN S RT T S

()
Cat-and-mouse
regarding
the buffer overrun problem
*)
=

1978

Robin Milner designs ML programming language, with

provably sz-checH ng.
Turing award 1991

)

-
Cleverly malicious?
Maliciously clever? Bufferoverrun

Turing award 1980)
()
1988 oA

Everything is still writteninC . ..

Robert T. Morris, graduate student at Comell, exploits buffer
overruns in Intemet hosts (sendmail, finger, rsh) to bring
down the entire Intemet.

... became the first person convicted under the
then-new Computer Fraud and Abuse Act.
(400 hours community service. Now an MIT prof.)
?)

% a.out
What is your name?

abedefghijkl???2executable-machine-code...

printf ("Thank you, %s.\n", name) ;
return 0;

How may I serve you, master? %RSP == 10
#include <stdio.h> 2,b,c,d
int main(int argc, char **argv) { e f g h
char name[12]; int i; i 5 k.1
printf ("What is your name?\n") ; 0ld %RSP e ‘&_
for (i=0; ; i++) { Saved RIP |2 2 32—
int c = getchar(); m)
if (c=="\n'|| c ==EOF) break; machine
name[i] = c; code
}
name [1]="\0'; —_—

512/17

N
Buffer overrun with random stack-start

% a.out
What is your name?

abcdefghijkl???2executable-machine-code...

How may I serve you, master? %RSP ==

B 10

#include <stdio.h> a,b,c,d

int main(int argc, char **argv) { e f g h
—_—

char name([12]; int i; N s k1

printf ("What is your name?\n"); 0ld %RSP s

for (i=0; ; i++) { Saved RIP
int ¢ = getchar();

|

lexecutable)

if (c=='\n' || c ==EOF) break; machine
name[i] = c; code
}
name[i]="\0"; —
printf ("Thank you, %s.\n", name) ; R.andom?ze E
return 0; this |OCaTIﬂ.
} Therefore, this address
can'tbe predicted 2/

()
1990s >
Everything is still writteninC . ..
Buffer overrun attacks proliferate like crazy
“Solution:”
Every time the OS “execvp”s a new process,
randomize the address of the base of the stack.
That way, code-injection attacks can’t predict what address
to jump to!
2
()

The nop-sled attack

%RSP —

% a.out

What is your name?

“Solution:” Every time the OS“execvp’sa new process, 10
randomize the address ofthe baseofthe stack. 2,b,c.d
Thatway,code-injection attacks can’tpredctwhat e . f,g,h
address to jump to! old %RSP — .:9“._
lop nop Nop|

hop nop nop
hop nop nop
hop nop nop
hop nop nop
hop nop nop
hop nop nop
hop nop nop
DO _NOP _DOD

abcdefghijk1????nop nop nop nop nop nop executable-mg

executable
mach‘line

How may I serve you, master?

e

2)

()
1] H .9 H H
Solution:” hardware permissions ﬁg
%RSP =
“Solution:” In the virtual menory system, mark the stack blo 7
a c
region “no-execute” _.f_._.h_
L) . L.t,9.0
(required inventingnew hardwaremecharis m!) N
0ld URSP — |obmbtdiotn |
5 a.out Saved RIP | 2,2 $25a
. ffop nop hop|
What is your name? hop nop nop

abcdefghijkl????nop nop nop nop nop nop executable—r:gg Eg; :gg
hop nop nop
hop nop nop

Segmentation violation hop nop nop

hop nop nop

BUT: Dhop _nop nop

(1) doesn’tprotectagainstreturn-to-libcattacks (suchas execut'able

the “B” version ofhomework5 mach"lne

(2) doesn'tprotectagainstcode injectioninto the heap

wpn i —_—

(such as the “A” version ofhomework5) 1)

-

“Solution:” more hardware permissionsg?*

“Solution:” In the virtual memory system, mark the BSS

What is your name?

Segmentation violation

region “no-execute.” 10
This DOES protectagainstthe “A” version ofhomewark5 a b c d
(and we had to specificallydisahble this protection to allow e f g h
you to have your fun) k 1
0ld URSP —r | bt
% a.out Saved RIP

abcdefghijkl????nop nop nop nop nop nop executablre-r_l

BUT: hop nop nop
\ ’] Te
(1) doesn’tprotectagainstreturn-to-libcatiacks (suchas executab
the “B” version ofhomework5 machine
code
e
35
>/

s
113 H Bl
Solution:” canary values
“Solution:” Check whetherthe canaryhas been overwritten, 10
justbefore returning fromthe function. a b c d
This DOESprotectagainstthe “A” version ofhomewark5 e f g h

This DOES protectagainstreturn-todibc attacks

old %RsP -, | CANAry

% a.out Saved RIP [2,2 o=y
What is your name? hop nop nop

hop nop nop
hop nop nop
hop nop nop
hop nop nop

abcdefghijkl????nop nop nop nop nop nop executable-]

Stackguard detected an attack, i i d hop nop nop
hop nop nop
BUT: pop nop nop
i i executable
(1) There are still ways to defeatit G
(2) Costs overhead nevermuch caughton code
e
36
J

512/17

=
Heartbeat

Component of OpenSSL

Used across the Internet

http:/ /xkcd.com/1354/

-

If strlen() doesn’t match

SERNER, ARE 00 T HERE? £ Uog vents these 500 letters: HAT.
Bugin OpenSSL |“ 7™

given length . . .

buffer overrun

(Those protections don’t work against
HeartBleed

Stack randomization: doesn’tprotect.
Stack no-execute: doesn’tprotect
BSS no-execute: doesn’t protect
Canary: doesn’t protect

Heartbleed is a buffer-overrun

It’s not code-injection, it’s not
return-to-libc.

vulnerability, but it’s a “read-only” attack!

2

(SERVER, ARE YOU, STLL. THERE?.
IFSOREPY “HAT (500 o M09 s thene 200 aekters:
First Internet bug report ﬁ ' *
with:
* logo
* web site .0‘9
Consequence:
Read up to &4 kilobytes from your
OS address space, send it to attacker.
If those happento contain crypto keys
or other secret info, you're hacked!
http: //xkcd.com/1354/ »)
(“ H 7 H H \
Solution:” adjust C with

array-bounds checks

rs

it’s really not C any more.

There have been a dozen or more language designs like
this. None have ever caught on. The problem is, then

-
“Solution:” Java, C#, etc.

Type-safe languages with array-bounds
checking and garbage collection . . .

Actually, thatis the solution.

512/17

512/17

() ()
Language choice as an ethical issue? @Wg Agenda 594
From a software engineering ethics point of view: Famous bugs

Common bugs
If you deliberately choose an unsafe programming Testing (from lecture 6)
language, there hadbetter be a justified reason. Reasoning about programs
Ethics of performance tuning
If you carelessly choose an unsafe programming
language, then you're being unethical.
43) 44)

() (~ eushesow Ebf New HOI“(@tmu T)

Tune your program (1950-2050) giﬁ VW Is Said to Cheat on Diesel fﬁg
Emissions; U.S. to Order Big Recall ————
%
o e b 0000 | &
257 0.9344
256 0.930°
;:5 g;;i; % of execution
0.2727 time spent in
0.2654
the binary
gxecutablg
Name of
the running
0.0036
0.0036 libc-2.17 .so time
'WASHINGTON — The Obama administratios
directed Volkswz to recall nearly a half-ig
saying the automaker illegally installed software in its diesel-
4) \U power cars to evade standards for reducing smog.
(G P) ()
eneral principle of . v
extreme performance tuning A Real-life NJ DMV test harness e\
Steering
heel never moves?
In the test harness Not in the test harness
Run the NOy trap Tum off the
(uses more gas, NOx trap
wears out the (great gas mileage,
NOx trap) but unfortunately, New style (in many states) DMV emissions testing
. for cars made since 1996
40x more nitrous-
oxide pollution)
))

=
How the test harness works

Are you
polluting?

What if you didn’t cheat
on purpose?

(N
Programming challenge gw
Write a program that cheats on this test:
polluting?,
Solution:
printf(“Nope.”);
Obviously trivial! Therefore we rely on law and ethics
to prevent this cheating. %)
(2
The Internet of Things ggg

KrebsonSecurity

In-depth security news and investigation

21 Hacked Cameras, DVRs Powered Today’s
Massive Internet Outage

-

N
The Internet of Things Qg

Manufacturer A sellsa
“thing” (wifi router,
toaster, thermostat, baby
monitor, coffee maker,
fitbit, football helmet, ...)
for $50,

... full of security
vulnerabilities (buffer
overruns, SQL injection,
etc...)

Manufacturer B pays
their engineers to spend
afewmore days, be a
bit more careful, sels the
“thing” for $51.

512/17

512/17

s ™ s ™
The Internet of Things s: Hack a million devices,
gain a million DDOS nodes

49.99
s

Consumer can't tel the difference,
might as well buy the cheaperone

*)
() ()
Does carelessness pay? &?g The Rest of the Course &,5
Fixing the “loT security problem”is an open problem, from a Assignment 7 ,
. . * Due onDean’s Date (May 16) at 5 PM
regulatory point of view.

« Cannot submit past 11:59 PM
« Can use late pass (but only until 11:59 PM)

From a software engineering ethics point of view: Office hours and exam prep sessions

. « Will be announced on Piazza
Your bug may harm the entire Internet. .
Final exam
* When: Friday 5/19, 1:30 PM —4:30 PM

, . . . * Where: Friend Center 101
Don’t make and sell stupidly insecure devices! « Closed book, closed notes, no electronic devices

() ()
Course Summary Course Summary Qg

We have covered: We have covered (cont.):

Programming in the large Under the hood

* The C programming language

« Testi * Number systems

Ber!ng + Language levels tour
. D:Ibumgi + Assembly language

h i * Machine language
. Frogram & programming. stye » Assemblers and linkers
« Data structures s
* Modularit « Service levels tour
Y » Exceptions and processes

* Performance

« Storage management

+ Dynamic memory management
» Process management

« 1/0O management

+ Signals

10

Thank you!

512/17

11

