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Operators

Computers represent integers as bits
Arithmetic operations:  +, -, *, /, etc.

Bit operations: and, or, xor, shift, etc.

Typical language design (1970s): provide abstraction
so that one does not confuse integers with their 
representation
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Operators

Decisions
• Provide typical arithmetic operators:  + - * /  %

• Provide typical relational operators:  == != < <= > >=

• Each evaluates to 0 ⇒ FALSE or 1 ⇒ TRUE

• Provide typical logical operators:  ! && ||

• Each interprets 0 ⇒ FALSE, ≠0 ⇒ TRUE

• Each evaluates to 0 ⇒ FALSE or 1 ⇒TRUE

• Provide bitwise operators:  ~ & | ^ >> <<

• Provide a cast operator:  (type)



Aside: Logical vs. Bitwise Ops
Logical NOT (!) vs. bitwise NOT (~)

• ! 1 (TRUE) ⇒ 0 (FALSE)

• ~ 1 (TRUE) ⇒ -2 (TRUE)

Implication:
• Use logical NOT to control flow of logic
• Use bitwise NOT only when doing bit-level manipulation
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Decimal  Binary
1  00000000 00000000 00000000 00000001

! 1  00000000 00000000 00000000 00000000

Decimal  Binary
1  00000000 00000000 00000000 00000001

~ 1  11111111 11111111 11111111 11111110



Aside: Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) ⇒ 1 (TRUE)

• 2 (TRUE)  & 1 (TRUE) ⇒ 0 (FALSE)
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Decimal  Binary
2  00000000 00000000 00000000 00000010

&& 1  00000000 00000000 00000000 00000001
---- -----------------------------------

1  00000000 00000000 00000000 00000001

Decimal  Binary
2  00000000 00000000 00000000 00000010

& 1  00000000 00000000 00000000 00000001
---- -----------------------------------

0  00000000 00000000 00000000 00000000



Aside: Logical vs. Bitwise Ops

Implication:
• Use logical AND to control flow of logic
• Use bitwise AND only when doing bit-level manipulation

Same for logical OR (||) and bitwise OR (|)
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Assignment Operator
Typical programming 
language of 1970s:

Statements, Expressions
stmt ::= 

a:=exp
|  if exp then stmt else stmt
| while exp do stmt
| begin stmtlist end

stmtlist ::= stmt |  stmtlist ; stmt

exp ::=
id | exp+exp | exp-exp | -exp
| (exp) | …

C language: assignment 
is an expression!
stmt ::= 

exp ;
|  { stmtlist }
|  if (exp) stmt else stmt
| while (exp) stmt

stmtlist ::= stmt  |  stmtlist stmt

exp ::=
id | exp+exp | exp-exp | -exp 

| id=exp | exp,exp | exp?exp:exp
| (exp) | …
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Assignment Operator

Decisions
• Provide assignment operator:  =

• Side effect: changes the value of a variable
• Evaluates to the new value of the variable
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Assignment Operator Examples
Examples

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) != EOF) …
/* Read a character.

Side effect: assign that character to i.
Evaluate to that character.
Compare that character to EOF. 
Evaluate to 0 (FALSE) or 1 (TRUE). */
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Special-Purpose Assignment Operators
Decisions

• Provide special-purpose assignment operators:
+= -= *= /= ~= &= |= ^= <<= >>=

Examples
i += j  same as i = i + j

i /= j  same as i = i / j

i |= j  same as i = i | j

i >>= j same as i = i >> j
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Special-Purpose Assignment Operators

Increment and decrement operators:  ++ --
• Prefix and postfix forms

Examples

(1) i = 5;
j = ++i;

(2) i = 5;
j = i++;

(3) i = 5;
j = ++i + ++i;  

(4) i = 5;
j = i++ + i++;

What is the 
value of i?  Of j?
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Memory allocation
Typical programming 
language of 1970s:

Special program statement 
to allocate a new object
stmt ::= 

new p
This is not so different from 
Java’s   p=new(MyClass)

Difficulties:
1.system standard allocator could 
be slow, or inflexible
2.What about deallocation?

• Explicit “free” leads to bugs
• Automatic garbage collection too 

expensive?

C language

Nothing built-in
•malloc, free functions provided in 
standard library 

•allow programmers to roll their 
own allocation systems

Difficulties:
1.System standard allocator could 
be slow, or inflexible

(but that’s mitigated by roll-your-own)

2.  Explicit “free” leads to bugs
•Turns out, by now we know, automatic 
garbage collection isn’t too expensive 
after all!
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Sizeof Operator
Malloc function needs to be told how many bytes to 

allocate
struct foo {int a, b; float c;}    *p;
p = malloc(12);    /* this is correct but not portable */

Issue:  How can programmers determine data sizes?
Rationale:

• The sizes of most primitive types are unspecified
• Sometimes programmer must know sizes of primitive types

• E.g. when allocating memory dynamically
• Hard code data sizes ⇒ program not portable
• C must provide a way to determine the size of a given data type 

programmatically
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Sizeof Operator

Decisions
• Provide a sizeof operator

• Applied at compile-time
• Operand can be a data type
• Operand can be an expression

• Compiler infers a data type

Examples, on CourseLab
• sizeof(int)⇒ 4

• When i is a variable of type int…
• sizeof(i)⇒ 4
• sizeof(i+1)
• sizeof(i++ * ++i – 5)

What is the 
value?
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Other Operators
Issue:  What other operators should C have?

Decisions
• Function call operator

• Should mimic the familiar mathematical notation
• function(arg1, arg2, …)

• Conditional operator:  ?:
• The only ternary operator
• See King book

• Sequence operator: ,
• See King book

• Pointer-related operators:  & *
• Address of, dereference (described in precepts)

• Structure-related operators:  .  ->
• Structure field select (described in precepts)



Operators Summary: C vs. Java

Java only
• >>> right shift with zero fill
• new create an object
• instanceof is left operand an object of class right operand?
• p.f object field select

C only
• p.f structure field select
• * dereference
• p->f dereference then structure member select: (*p).f
• & address of
• , sequence
• sizeof compile-time size of
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Operators Summary: C vs. Java

Related to type boolean:
• Java: Relational and logical operators evaluate to type boolean
• C: Relational and logical operators evaluate to type int
• Java: Logical operators take operands of type boolean
• C: Logical operators take operands of any primitive type or memory 

address
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Sequence Statement

Issue:  How should C implement sequence?

Decision
• Compound statement, alias block
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{
statement1
statement2
…

}



Selection Statements
Issue:  How should C implement selection?

Decisions
• if statement, for one-path, two-path decisions
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if (expr)
statement1

if (expr)
statement1

else
statement2

0 ⇒ FALSE
non-0 ⇒ TRUE



Selection Statements
Decisions (cont.)

• switch and break statements, for multi-path decisions on a 
single integerExpr
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switch (integerExpr)
{  case integerLiteral1:

…
break;

case integerLiteral2:
…
break;

…
default:

…
}

What happens 
if you forget 
break?



Repetition Statements
Issue:  How should C implement repetition?

Decisions
• while statement; test at leading edge

• for statement; test at leading edge, increment at trailing edge

• do…while statement; test at trailing edge
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while (expr)
statement

for (initialExpr; testExpr; incrementExpr)
statement

do
statement

while (expr);

0 ⇒ FALSE
non-0 ⇒ TRUE



Declaring Variables

Issue:  Should C require variable declarations?

Rationale:
• Declaring variables allows compiler to check spelling (compile-time error 

messages are easier for programmer than debugging strange behavior at run time!)

• Declaring variables allows compiler to allocate memory more 
efficiently
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Where are variables declared?
Typical 1960s language:
•Global variables

Typical 1970s language:
•Global variables

•Local variables declared just 
before function body

C language:
•Global variables

•Local variables can be 
declared at beginning of any 
{block}, e.g.,
{int i=6, j;

j=7;

if (i>j) 

{int x; x=i+j; return x;}

else {int y; y=i-j; return y;}

} scope of variable y ends 
at matching close brace



Repetition Statements
Decisions (cont.)

• Cannot declare loop control variable in for statement
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{
…
for (int i = 0; i < 10; i++)

/* Do something */
…

}

{
int i;
…
for (i = 0; i < 10; i++)

/* Do something */
…

}

Illegal in C
(nobody thought of
that idea in 1970s)

Legal in C



Declaring Variables
Decisions (cont.):

• Declaration statements must appear before any other kind of 
statement in compound statement
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{
int i;
/* Non-declaration

stmts that use i. */
i = i+1;
int j;
/* Non-declaration

stmts that use j. */
j = j+1;

}

{
int i;
int j;
…
/* Non-declaration

stmts that use i. */
i = i+1;
/* Non-declaration

stmts that use j. */
j = j+1;

}

Legal in CIllegal in C
(nobody thought of
that idea in 1970s)



Other Control Statements

Issue:  What other control statements should C provide?

Decisions
• break statement (revisited)

• Breaks out of closest enclosing switch or repetition statement
• continue statement

• Skips remainder of current loop iteration
• Continues with next loop iteration
• When used within for, still executes incrementExpr

• goto statement
• Jump to specified label
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Declaring Variables

Decisions:
• Require variable declarations
• Provide declaration statement
• Programmer specifies type of variable (and other attributes too)

Examples
• int i;
• int i, j;
• int i = 5;
• const int i = 5;  /* value of i cannot change */
• static int i;     /* covered later in course */
• extern int i;     /* covered later in course */

29



Computing with Expressions

Issue:  How should C implement computing with 
expressions?

Decisions:
• Provide expression statement

expression ;

30



Computing with Expressions
Examples
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i = 5; 
/* Side effect: assign 5 to i.

Evaluate to 5. Discard the 5. */

j = i + 1;
/* Side effect: assign 6 to j.

Evaluate to 6. Discard the 6. */

printf("hello");
/* Side effect: print hello.

Evaluate to 5. Discard the 5. */

i + 1;
/* Evaluate to 6. Discard the 6. */

5;
/* Evaluate to 5. Discard the 5. */



Statements Summary: C vs. Java
Declaration statement:

• Java: Compile-time error to use a local variable before specifying its 
value

• C: Run-time error to use a local variable before specifying its value

final and const
• Java: Has final variables
• C: Has const variables

Expression statement
• Java: Only expressions that have a side effect can be made into 

expression statements
• C: Any expression can be made into an expression statement
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Statements Summary: C vs. Java
Compound statement:

• Java: Declarations statements can be placed anywhere within 
compound statement

• C: Declaration statements must appear before any other type of 
statement within compound statement

if statement
• Java: Controlling expr must be of type boolean
• C: Controlling expr can be any primitive type or a memory address 

(0 ⇒ FALSE, non-0 ⇒ TRUE)

while statement
• Java: Controlling expr must be of type boolean
• C: Controlling expr can be any primitive type or a memory address 

(0 ⇒ FALSE, non-0 ⇒ TRUE)
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Statements Summary: C vs. Java
do…while statement

• Java: Controlling expr must be of type boolean
• C: Controlling expr can be of any primitive type or a memory 

address (0 ⇒ FALSE, non-0 ⇒ TRUE)

for statement
• Java: Controlling expr must be of type boolean
• C: Controlling expr can be of any primitive type or a memory 

address (0 ⇒ FALSE, non-0 ⇒ TRUE)

Loop control variable
• Java: Can declare loop control variable in initexpr
• C: Cannot declare loop control variable in initexpr
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Statements Summary: C vs. Java
break statement

• Java: Also has “labeled break” statement
• C: Does not have “labeled break” statement

continue statement
• Java: Also has “labeled continue” statement
• C: Does not have “labeled continue” statement

goto statement
• Java: Not provided
• C: Provided (but don’t use it!)
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I/O Facilities

Issue:  Should C provide I/O facilities?

(many languages of the 1960s / 1970s had built-in special-
purpose commands for input/output)

Thought process
• Unix provides the file abstraction

• A file is a sequence of characters with an indication of the current 
position

• Unix provides 3 standard files
• Standard input, standard output, standard error

• C should be able to use those files, and others
• I/O facilities are complex
• C should be small/simple
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I/O Facilities

Decisions
• Do not provide I/O facilities in the language
• Instead provide I/O facilities in standard library

• Constant:   EOF
• Data type:  FILE (described later in course)
• Variables:  stdin, stdout, and stderr
• Functions: …
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Reading Characters

Issue:  What functions should C provide for reading 
characters? 

Thought process
• Need function to read a single character from stdin

• … And indicate failure
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Reading Characters

Decisions
• Provide getchar() function*
• Define getchar() to return EOF upon failure

• EOF is a special non-character int
• Make return type of getchar()wider than char

• Make it int; that's the natural word size

Reminder
• There is no such thing as “the EOF character”

*actually, a macro…
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Writing Characters

Issue:  What functions should C provide for writing 
characters? 

Thought process
• Need function to write a single character to stdout

Decisions
• Provide putchar() function
• Define putchar() to have int parameter

• For symmetry with getchar()
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Reading Other Data Types

Issue:  What functions should C provide for reading data 
of other primitive types?

Thought process
• Must convert external form (sequence of character codes) to internal 

form
• Could provide getshort(), getint(), getfloat(), etc.
• Could provide parameterized function to read any primitive type of 

data
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Reading Other Data Types

Decisions
• Provide scanf() function

• Can read any primitive type of data
• First parameter is a format string containing conversion 

specifications



Reading Other Data Types
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00000000000000000000000001111011

scanf("%d", &i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications

What is this 
ampersand? 
Covered later 
in course.
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Writing Other Data Types

Issue:  What functions should C provide for writing data 
of other primitive types?

Thought process
• Must convert internal form to external form (sequence of character 

codes)
• Could provide putshort(), putint(), putfloat(), etc.
• Could provide parameterized function to write any primitive type of 

data
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Writing Other Data Types

Decisions
• Provide printf() function

• Can write any primitive type of data
• First parameter is a format string containing conversion 

specifications



Writing Other Data Types
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00000000000000000000000001111011

printf("%d", i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications
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Other I/O Facilities
Issue:  What other I/O functions should C provide?

Decisions
• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• gets(): Read a line from stdin.  Brain-damaged, never use this!
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

Described in King book, and later in the course after covering 
files, arrays, and strings



Summary

C design decisions and the goals that affected them
• Data types
• Operators
• Statements
• I/O facilities

Knowing the design goals and how they affected the design 
decisions can yield a rich understanding of C
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Appendix: The Cast Operator
Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375f

i

i = (int)f



51

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000
00000000000000000000000000000000

-27.375f

d = (double)f

-27.375d
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Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

00000010

200000000000000000000000000000010

2

2i

c = (char)i

c
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Appendix: The Cast Operator

(4) Cast between integer types of same size:
• Compiler generates no code
• Compiler views given bit-pattern in a different way

211111111111111111111111111111110 -2i

u = (unsigned int)i

11111111111111111111111111111110 4294967294u


