
1

The C Programming Language

Part 2

Princeton University
Computer Science 217: Introduction to Programming Systems

Agenda

Data Types

Operators

Statements

I/O Facilities

2

3

Operators

Computers represent integers as bits
Arithmetic operations: +, -, *, /, etc.

Bit operations: and, or, xor, shift, etc.

Typical language design (1970s): provide abstraction
so that one does not confuse integers with their
representation

4

Operators

Decisions
• Provide typical arithmetic operators: + - * / %

• Provide typical relational operators: == != < <= > >=

• Each evaluates to 0 ⇒ FALSE or 1 ⇒ TRUE

• Provide typical logical operators: ! && ||

• Each interprets 0 ⇒ FALSE, ≠0 ⇒ TRUE

• Each evaluates to 0 ⇒ FALSE or 1 ⇒TRUE

• Provide bitwise operators: ~ & | ^ >> <<

• Provide a cast operator: (type)

Aside: Logical vs. Bitwise Ops
Logical NOT (!) vs. bitwise NOT (~)

• ! 1 (TRUE) ⇒ 0 (FALSE)

• ~ 1 (TRUE) ⇒ -2 (TRUE)

Implication:
• Use logical NOT to control flow of logic
• Use bitwise NOT only when doing bit-level manipulation

5

Decimal Binary
1 00000000 00000000 00000000 00000001

! 1 00000000 00000000 00000000 00000000

Decimal Binary
1 00000000 00000000 00000000 00000001

~ 1 11111111 11111111 11111111 11111110

Aside: Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) ⇒ 1 (TRUE)

• 2 (TRUE) & 1 (TRUE) ⇒ 0 (FALSE)

6

Decimal Binary
2 00000000 00000000 00000000 00000010

&& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

1 00000000 00000000 00000000 00000001

Decimal Binary
2 00000000 00000000 00000000 00000010

& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

0 00000000 00000000 00000000 00000000

Aside: Logical vs. Bitwise Ops

Implication:
• Use logical AND to control flow of logic
• Use bitwise AND only when doing bit-level manipulation

Same for logical OR (||) and bitwise OR (|)

7

8

Assignment Operator
Typical programming
language of 1970s:

Statements, Expressions
stmt ::=

a:=exp
| if exp then stmt else stmt
| while exp do stmt
| begin stmtlist end

stmtlist ::= stmt | stmtlist ; stmt

exp ::=
id | exp+exp | exp-exp | -exp
| (exp) | …

C language: assignment
is an expression!
stmt ::=

exp ;
| { stmtlist }
| if (exp) stmt else stmt
| while (exp) stmt

stmtlist ::= stmt | stmtlist stmt

exp ::=
id | exp+exp | exp-exp | -exp

| id=exp | exp,exp | exp?exp:exp
| (exp) | …

9

Assignment Operator

Decisions
• Provide assignment operator: =

• Side effect: changes the value of a variable
• Evaluates to the new value of the variable

10

Assignment Operator Examples
Examples

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) != EOF) …
/* Read a character.

Side effect: assign that character to i.
Evaluate to that character.
Compare that character to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

11

Special-Purpose Assignment Operators
Decisions

• Provide special-purpose assignment operators:
+= -= *= /= ~= &= |= ^= <<= >>=

Examples
i += j same as i = i + j

i /= j same as i = i / j

i |= j same as i = i | j

i >>= j same as i = i >> j

12

Special-Purpose Assignment Operators

Increment and decrement operators: ++ --
• Prefix and postfix forms

Examples

(1) i = 5;
j = ++i;

(2) i = 5;
j = i++;

(3) i = 5;
j = ++i + ++i;

(4) i = 5;
j = i++ + i++;

What is the
value of i? Of j?

13

Memory allocation
Typical programming
language of 1970s:

Special program statement
to allocate a new object
stmt ::=

new p
This is not so different from
Java’s p=new(MyClass)

Difficulties:
1.system standard allocator could
be slow, or inflexible
2.What about deallocation?

• Explicit “free” leads to bugs
• Automatic garbage collection too

expensive?

C language

Nothing built-in
•malloc, free functions provided in
standard library

•allow programmers to roll their
own allocation systems

Difficulties:
1.System standard allocator could
be slow, or inflexible

(but that’s mitigated by roll-your-own)

2. Explicit “free” leads to bugs
•Turns out, by now we know, automatic
garbage collection isn’t too expensive
after all!

14

Sizeof Operator
Malloc function needs to be told how many bytes to

allocate
struct foo {int a, b; float c;} *p;
p = malloc(12); /* this is correct but not portable */

Issue: How can programmers determine data sizes?
Rationale:

• The sizes of most primitive types are unspecified
• Sometimes programmer must know sizes of primitive types

• E.g. when allocating memory dynamically
• Hard code data sizes ⇒ program not portable
• C must provide a way to determine the size of a given data type

programmatically

15

Sizeof Operator

Decisions
• Provide a sizeof operator

• Applied at compile-time
• Operand can be a data type
• Operand can be an expression

• Compiler infers a data type

Examples, on CourseLab
• sizeof(int)⇒ 4

• When i is a variable of type int…
• sizeof(i)⇒ 4
• sizeof(i+1)
• sizeof(i++ * ++i – 5)

What is the
value?

16

Other Operators
Issue: What other operators should C have?

Decisions
• Function call operator

• Should mimic the familiar mathematical notation
• function(arg1, arg2, …)

• Conditional operator: ?:
• The only ternary operator
• See King book

• Sequence operator: ,
• See King book

• Pointer-related operators: & *
• Address of, dereference (described in precepts)

• Structure-related operators: . ->
• Structure field select (described in precepts)

Operators Summary: C vs. Java

Java only
• >>> right shift with zero fill
• new create an object
• instanceof is left operand an object of class right operand?
• p.f object field select

C only
• p.f structure field select
• * dereference
• p->f dereference then structure member select: (*p).f
• & address of
• , sequence
• sizeof compile-time size of

17

Operators Summary: C vs. Java

Related to type boolean:
• Java: Relational and logical operators evaluate to type boolean
• C: Relational and logical operators evaluate to type int
• Java: Logical operators take operands of type boolean
• C: Logical operators take operands of any primitive type or memory

address

18

Agenda

Data Types

Operators

Statements

I/O Facilities

19

Sequence Statement

Issue: How should C implement sequence?

Decision
• Compound statement, alias block

20

{
statement1
statement2
…

}

Selection Statements
Issue: How should C implement selection?

Decisions
• if statement, for one-path, two-path decisions

21

if (expr)
statement1

if (expr)
statement1

else
statement2

0 ⇒ FALSE
non-0 ⇒ TRUE

Selection Statements
Decisions (cont.)

• switch and break statements, for multi-path decisions on a
single integerExpr

22

switch (integerExpr)
{ case integerLiteral1:

…
break;

case integerLiteral2:
…
break;

…
default:

…
}

What happens
if you forget
break?

Repetition Statements
Issue: How should C implement repetition?

Decisions
• while statement; test at leading edge

• for statement; test at leading edge, increment at trailing edge

• do…while statement; test at trailing edge

23

while (expr)
statement

for (initialExpr; testExpr; incrementExpr)
statement

do
statement

while (expr);

0 ⇒ FALSE
non-0 ⇒ TRUE

Declaring Variables

Issue: Should C require variable declarations?

Rationale:
• Declaring variables allows compiler to check spelling (compile-time error

messages are easier for programmer than debugging strange behavior at run time!)

• Declaring variables allows compiler to allocate memory more
efficiently

24

Where are variables declared?
Typical 1960s language:
•Global variables

Typical 1970s language:
•Global variables

•Local variables declared just
before function body

C language:
•Global variables

•Local variables can be
declared at beginning of any
{block}, e.g.,
{int i=6, j;

j=7;

if (i>j)

{int x; x=i+j; return x;}

else {int y; y=i-j; return y;}

} scope of variable y ends
at matching close brace

Repetition Statements
Decisions (cont.)

• Cannot declare loop control variable in for statement

26

{
…
for (int i = 0; i < 10; i++)

/* Do something */
…

}

{
int i;
…
for (i = 0; i < 10; i++)

/* Do something */
…

}

Illegal in C
(nobody thought of
that idea in 1970s)

Legal in C

Declaring Variables
Decisions (cont.):

• Declaration statements must appear before any other kind of
statement in compound statement

27

{
int i;
/* Non-declaration

stmts that use i. */
i = i+1;
int j;
/* Non-declaration

stmts that use j. */
j = j+1;

}

{
int i;
int j;
…
/* Non-declaration

stmts that use i. */
i = i+1;
/* Non-declaration

stmts that use j. */
j = j+1;

}

Legal in CIllegal in C
(nobody thought of
that idea in 1970s)

Other Control Statements

Issue: What other control statements should C provide?

Decisions
• break statement (revisited)

• Breaks out of closest enclosing switch or repetition statement
• continue statement

• Skips remainder of current loop iteration
• Continues with next loop iteration
• When used within for, still executes incrementExpr

• goto statement
• Jump to specified label

28

Declaring Variables

Decisions:
• Require variable declarations
• Provide declaration statement
• Programmer specifies type of variable (and other attributes too)

Examples
• int i;
• int i, j;
• int i = 5;
• const int i = 5; /* value of i cannot change */
• static int i; /* covered later in course */
• extern int i; /* covered later in course */

29

Computing with Expressions

Issue: How should C implement computing with
expressions?

Decisions:
• Provide expression statement

expression ;

30

Computing with Expressions
Examples

31

i = 5;
/* Side effect: assign 5 to i.

Evaluate to 5. Discard the 5. */

j = i + 1;
/* Side effect: assign 6 to j.

Evaluate to 6. Discard the 6. */

printf("hello");
/* Side effect: print hello.

Evaluate to 5. Discard the 5. */

i + 1;
/* Evaluate to 6. Discard the 6. */

5;
/* Evaluate to 5. Discard the 5. */

Statements Summary: C vs. Java
Declaration statement:

• Java: Compile-time error to use a local variable before specifying its
value

• C: Run-time error to use a local variable before specifying its value

final and const
• Java: Has final variables
• C: Has const variables

Expression statement
• Java: Only expressions that have a side effect can be made into

expression statements
• C: Any expression can be made into an expression statement

32

Statements Summary: C vs. Java
Compound statement:

• Java: Declarations statements can be placed anywhere within
compound statement

• C: Declaration statements must appear before any other type of
statement within compound statement

if statement
• Java: Controlling expr must be of type boolean
• C: Controlling expr can be any primitive type or a memory address

(0 ⇒ FALSE, non-0 ⇒ TRUE)

while statement
• Java: Controlling expr must be of type boolean
• C: Controlling expr can be any primitive type or a memory address

(0 ⇒ FALSE, non-0 ⇒ TRUE)

33

Statements Summary: C vs. Java
do…while statement

• Java: Controlling expr must be of type boolean
• C: Controlling expr can be of any primitive type or a memory

address (0 ⇒ FALSE, non-0 ⇒ TRUE)

for statement
• Java: Controlling expr must be of type boolean
• C: Controlling expr can be of any primitive type or a memory

address (0 ⇒ FALSE, non-0 ⇒ TRUE)

Loop control variable
• Java: Can declare loop control variable in initexpr
• C: Cannot declare loop control variable in initexpr

34

Statements Summary: C vs. Java
break statement

• Java: Also has “labeled break” statement
• C: Does not have “labeled break” statement

continue statement
• Java: Also has “labeled continue” statement
• C: Does not have “labeled continue” statement

goto statement
• Java: Not provided
• C: Provided (but don’t use it!)

35

Agenda

Data Types

Operators

Statements

I/O Facilities

36

I/O Facilities

Issue: Should C provide I/O facilities?

(many languages of the 1960s / 1970s had built-in special-
purpose commands for input/output)

Thought process
• Unix provides the file abstraction

• A file is a sequence of characters with an indication of the current
position

• Unix provides 3 standard files
• Standard input, standard output, standard error

• C should be able to use those files, and others
• I/O facilities are complex
• C should be small/simple

37

I/O Facilities

Decisions
• Do not provide I/O facilities in the language
• Instead provide I/O facilities in standard library

• Constant: EOF
• Data type: FILE (described later in course)
• Variables: stdin, stdout, and stderr
• Functions: …

38

39

Reading Characters

Issue: What functions should C provide for reading
characters?

Thought process
• Need function to read a single character from stdin

• … And indicate failure

40

Reading Characters

Decisions
• Provide getchar() function*
• Define getchar() to return EOF upon failure

• EOF is a special non-character int
• Make return type of getchar()wider than char

• Make it int; that's the natural word size

Reminder
• There is no such thing as “the EOF character”

*actually, a macro…

41

Writing Characters

Issue: What functions should C provide for writing
characters?

Thought process
• Need function to write a single character to stdout

Decisions
• Provide putchar() function
• Define putchar() to have int parameter

• For symmetry with getchar()

42

Reading Other Data Types

Issue: What functions should C provide for reading data
of other primitive types?

Thought process
• Must convert external form (sequence of character codes) to internal

form
• Could provide getshort(), getint(), getfloat(), etc.
• Could provide parameterized function to read any primitive type of

data

43

Reading Other Data Types

Decisions
• Provide scanf() function

• Can read any primitive type of data
• First parameter is a format string containing conversion

specifications

Reading Other Data Types

44

00000000000000000000000001111011

scanf("%d", &i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications

What is this
ampersand?
Covered later
in course.

45

Writing Other Data Types

Issue: What functions should C provide for writing data
of other primitive types?

Thought process
• Must convert internal form to external form (sequence of character

codes)
• Could provide putshort(), putint(), putfloat(), etc.
• Could provide parameterized function to write any primitive type of

data

46

Writing Other Data Types

Decisions
• Provide printf() function

• Can write any primitive type of data
• First parameter is a format string containing conversion

specifications

Writing Other Data Types

47

00000000000000000000000001111011

printf("%d", i);

011000010110001001100011

123

'1' '2' '3'

See King book for conversion specifications

48

Other I/O Facilities
Issue: What other I/O functions should C provide?

Decisions
• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• gets(): Read a line from stdin. Brain-damaged, never use this!
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

Described in King book, and later in the course after covering
files, arrays, and strings

Summary

C design decisions and the goals that affected them
• Data types
• Operators
• Statements
• I/O facilities

Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C

49

50

Appendix: The Cast Operator
Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375f

i

i = (int)f

51

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000
00000000000000000000000000000000

-27.375f

d = (double)f

-27.375d

52

Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

00000010

200000000000000000000000000000010

2

2i

c = (char)i

c

53

Appendix: The Cast Operator

(4) Cast between integer types of same size:
• Compiler generates no code
• Compiler views given bit-pattern in a different way

211111111111111111111111111111110 -2i

u = (unsigned int)i

11111111111111111111111111111110 4294967294u

