Program Verification

Aarti Gupta

-
Agenda

Famous bugs

Common bugs

Testing (from lecture 6)
Reasoning about programs

Techniques for program verification

-

Famous Bugs

gy

sk el M {' Nawe FTeowrwy oud
FEIT - mh.} L v FAr Ve el
Woi e nrame EFSERY) Yivifa: AL A
Py Taew . l)o’)b"
ok 3 fse 75:.

Fomd bt~) I e
‘:ff‘:EE:>., ‘;;‘ . ‘%" “Eﬁrﬁ’
1ede 1 1) inw Ine .\

3 “- 30 a‘. LR fé}'c: ‘s'?z .,d“ q

' @‘l 20 Cune| F

(M’Qlu f“\‘

e Z-F.;‘::}Ja:lt:}:} Caie 0'{ bm‘ ‘u'o.\ {wa.l-

2

The first bug: A moth in a relay (1945)
At the Smithsonian (currently not on display)

-

(in)Famous Bugs

« Safety-critical systems

(. \
low current high current high current
electron beam electron beam electron beam
was scanned was tracked with no target
across the field at the target > 'lightning’
Electron Mode X-Ray Mode | THE PROBLEM

tray including the target, a flattening filter, the collimator jaws and an ion
chamber was moved OUT for "electron" mode, and IN for "photon" mode.

Therac-25 medical radiation device (1985)
At least 5 deaths attributed to a race condition in software

(in)Famous Bugs

* Mission-critical systems

[:](:]3/45/7844

GeoStar 45
EST 14 Aug. 2003

Ariane-5 self-destruction (1995) The Northeast Blackout (2003)
SW interface issue, backup failed Race conditionin power control software
Cost: $400M payload Cost: $4B

-
(in)Famous Bugs

« Commodity hardware / software

—— e

>
: 5{?1 \

eyt Y 1S Lkt
ARG DRSS

Pentium bug (1994) Code Red worm on MS IIS server (2001)
Float computation errors Buffer overflow exploited by worm
Cost: $475M Infected 359k servers

Cost: >$2B

Common Bugs

* Runtime bugs
* Null pointer dereference (access via a pointer that is Null)
 Array buffer overflow (out of bound index)
« Can leadto security vulnerabilities
« Uninitialized variable
* Divisionby 0

« Concurrency bugs
« Race condition (flaw in accessing a shared resource)
« Deadlock (no process can make progress)

* Functional correctness bugs
e |nput-outputrelationships

« Interface properties
 Data structure invariants

-

Program Verification

Ideally: Prove that any given program s correct

General
Program |— Right or Wrong

program.c — Checker

Specification

9

In general: Undecidable

This lecture: For some (kinds of) properties, a Program Verifier
can provide a proof (if right) or a counterexample (if wrong)

-

Program Testing (Lecture 6)

-

Pragmatically: Convince yourselfthat a specific
program probably works

Specification ——

program.c ——

Specific
Testing
Strategy

——

Probably Right
or
Certainly Wrong

“Program testing can be quite effective for showing the presence
of bugs, but is hopelessly inadequate for showing their absence.”

— Edsger Dijkstra

"/

Path Testing Example (Lecture 6)

Example pseudocode:

if (conditionl)
statementl;

else
statement2;

if (condition?2)
statement3;

else
statement4;

LTI

Path testing:

Should make sure all logical
paths are executed

How many passes
through code are
required?

Four paths for four combinations of
(condition1, condition 2): TT, TF, FT, FF

« Simple programs => maybe reasonable
« Complex program => combinatorial explosion!!!

« Path test code fragments

10

e
Agenda

Famous bugs

Common bugs

Testing (from lecture 6)
Reasoning about programs

Techniques for program verification

Y

Reasoning about Programs

1 int factorial (int x) { Example:

2 int y=1; factorial program

3 int z = 0;

4 while (z '= x) { :

= z =z + 1: Check:

6 v =y * z; If x >= 0, then y = fac(x)

7) ' (fac is the mathematical function)
8 return y;

9}

« Try out the program, say for x=3
 Atline 4, before executingthe loop: x=3, y=1, z=0
« Since z = x, we will execute the while loop
« Atline 4, after 1stiteration of loop: x=3, z=1, y=1
« Atline 4, after 2" iteration of loop: x=3, z=2, y=2
« Atline 4, after 3" iteration of loop: x=3, z=3, y=6
« Since z == x, exit loop, return 6: It works!

Reasoning about Programs

1 int factorial (int =x) ({ Example:

2 int y=1; factorial program

3 int z = 0;

4 while (Z 1= X) { CheCk.

5 z =2z + 1; _ _

6 I If x >= 0, then y = fac(x)
7}

8 return y;

9 }

* Try outthe program, say for x=4
 Atline 4, before executingthe loop: x=4, y=1, z=0
« Since z = x, we will execute the while loop
« Atline 4, after 1stiteration of loop: x=4, z=1, y=1
« Atline 4, after 2" iteration of loop: x=4, z=2, y=2
« Atline 4, after 3" iteration of loop: x=4, z=3, y=6
« Atline 4, after 4th iteration of loop: x=4, z=4, y=2
« Since z == x, exit loop, return 24: It works!

y:
y=24

Reasoning about Programs

1 int factorial (int =x) ({ Example:

2 int y=1; factorial program

3 int z = 0;

4 while (Z 1= X) { CheCk.

5 z =2z + 1; _ _

6 I If x >= 0, then y = fac(x)
7}

8 return y;

9 }

* Try out the program, say for x=1000

« Atline 4, before executing the loop: x=1000, y=1, z=0
« Since z = x, we will execute the while loop

« Atline 4, after 1stiteration of loop: x=1000, z=1, y=1

« Atline 4, after 2" iteration of loop: x=1000, z=2, y=2

« Atline 4, after 3" iteration of loop: x=1000, z=3, y=6

« Atline 4, after 4th iteration of loop: x=1""N" ~=4 =24

Want to keep going on?7??

Lets try some mathematics ...

1 int factorial (int =x) ({ Example:
2 int y=1; factorial program
3 int z = 0;
4 while (z '= x) { :
- e 0 Check:
- v =g * 2 If x >= 0, then y = fac(x)
7 '}
8 return y;
9 }
* Annotate the program with assertions [Floyd 67]

» Assertions (at program lines) are expressed as (logic) formulas
* Here, we will use standard arithmetic

 Meaning: Assertion is true before that line is executed
- E.g., atline 3, assertion y=1is true

* For loops, we will use an assertion called a loop invariant
* Invariant meansthat the assertionis true in each iteration of loop

Loop Invariant

1 int factorial (int x) {
2 int y = 1;

3 int z = 0;

4 while (z '= x) {

5 z z + 1;
6
7
8
9

y =Yy * z;
}

return y;

}

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

v
* Loop invariant (assertion at line 4): y = fac(z)

* Try to prove by induction that the loop invariant holds

e Use induction over n, the number of loop iterations

Aside: Mathematical Induction

Example:
* Prove that sum of first n natural numbers =n * (n+1)/ 2

Solution: Proof by induction
« Base case: Prove the claim for n=1
e LHS=1, RHS=1*2/2=1, claimis true for n=1
* Inductive hypothesis: Assume that claim is true for n=k
e e, 1+2+3+.. . k=k*(k+1)/2
* Induction step: Now prove that the claim is true for n=k+1
e e, 1+2+3+ .. k+(k+1)=(k+1)* (k+2)/ 2
LHS =1+2+3+ .. k+ (k+1)
=(k* (k+1))/2 + (k+1) ... by using the inductive hypothesis
=(k* (k+1))/2 + 2*(k+1)/2
= ((k+2) " (k+1)) /2
= RHS
* Therefore, claimis true for all n

M@

Loop Invariant

1 int factorial (int x) {
2 int y = 1;

3 int z = 0;

4 while (z !'= x) {

5 z z + 1;
6
7
8
9

y =Yy * z;
}

return y;

}

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

v
* Loop invariant (assertion at line 4): y = fac(z)

* Try to prove by induction that the loop invariant holds
- Base case: First time at line 4, z=0, y=1, fac(0)=1, y=fac(z) holds v
* Induction hypothesis: Assume thaty = fac(z) at line 4
* Induction step: In next iteration of the loop (when z!=x)
« z' =z+1andy'=fac(z)*z+1="fac(z') (z'/y’ denote updated values)
- Therefore, at line 4, y’=fac(z’), i.e., loop invariant holds again v

Proof of Correctness

1 int factorial (int x) {
2 int y = 1;

3 int z = 0;

4 while (z !'= x) {

5 z =z + 1;

6 Yy =y * z;

7 }

8
9

return y;

}

\4

Example:
factorial program

Check:
If x >= 0, then y = fac(x)

 We have proved the loop invariant (assertion at line 4): y = fac(z) v

 What should we do now?
» Case analysis on loop condition

» |floop condition is true, i.e., if (z!=x), execute loop again, y=fac(z)
* Ifloop condition is false, i.e., if (z==x), exit the loop
« Atline 8, we have y=fac(z) AND z==x, i.e., y=fac(x)

* Thus, at return, y = fac(x)

 Proof of correctness of the factorial program is now done v

-

Program Verification

Rich history in computer science

Assigning Meaning to Programs [Floyd, 1967]
Program is annotated with assertions (formulas in logic)
Program is proved correct by reasoning about assertions

An Axiomatic Basis for Computer Programming [Hoare, 1969]
Hoare Triple: {P} S {Q}

S: program fragment

P: precondition (formulain logic)
Q: postcondition (formula in logic)

Meaning: If S executes from a state where P is true, and if S
terminates, then Q is true in the resulting state

This is called “partial correctness”
Note: does not guarantee termination of S
For our example: {x >= 0} y = factorial(x); {y = fac(x)}

Program Verification

* Proof Systems
« Perform reasoning using logic formulas and rules of inference

« Hoare Logic [Hoare 69]
* Inference rules for assignments, conditionals, loops, sequence

« Given a program annotated with preconditions, postconditions, and
loop invariants

* Generate Verification Conditions (VCs) automatically
« Ifeach VC is “valid”, then program is correct
« Validity of VC can be checked by a theorem-prover

* Question: Can these preconditions/postconditions/loop
invariants be generated automatically?

-

Automatic Program Verification

Question: Can these preconditions/postconditions/loop
invariants be generated automatically?

Answer: Yes! (in many cases)

Techniques for deriving the assertions automatically
* Model checkers: based on exploring “states” of programs

- Static analyzers: based on program analysis using “abstractions” of
programs

* ... many other techniques

Still an active area of research (after more than 45 years)!

J

-

Model Checking

 Temporal logic
« Used for specifying correctness properties
* [Pnueli, 1977]

* Model checking

« Verifying temporal logic properties by state space exploration
« [Clarke & Emerson, 1981] and [Queille & Sifakis, 1981]

Model Checker

(o~ e

 Model checker performs automatic state space exploration

 |f all reachable states are visited and error state is not reached,
then property is proved correct

int factorial (int x) {
inty =1;
intz =0;
while (z '= x) {

BT -

) | >
return y;

WCoJdJonuUud WM PR

}

o

Model
Checker

\

/

Property: formula
Is error state reachable?

Otherwise, it provides a counterexample (trace to error state)

Property holds
Proof

(may run out of memory)

\ Property fails

Counterexample

(Example: error state is where y !=fac(x) at return)

e
F-Soft Model Checker

Automatic tool for finding bugs in large C/C++ programs (NEC)

1: void pivot sort(int A[], int n){ ‘
2:1nt pivot=A[0], low=0, high=n; o,
3:whilie(low[<]high){ : BN F-Soft _’
4: do{ —
5 low++; counterexample trace
6: j while (Allow] <=pivot) ; Line 1: n=2, A[0]=10, A[1]=10
7: do{ ’ ’
3 high - - ; Line 2: pivot=10, low=0, high=2
9 + while (A[high]>= pivot); Line 3: low < high ? YES
10: swap(&A[low],&A[high]); Line 5:low=1
I Line 6: A[low] <=pivot? YES
12:) Line 5: low =2
Line 6: A[low] <= pivot ?
Array Buffer Overflow? : Buffer Overflow!!!

-

Summary

* Program verification
* Provide proofs of correctness for programs
« Testing cannot provide proofs of correctness (unless exhaustive)

* Proof systems based on logic
« Users annotate the program with assertions (formulas in logic)
 Theorem-provers perform search for proofs of correctness

« Automatic verification techniques
 Program assertions are derived automatically
« Model checkers can find proofs and generate counterexamples

Active area of research!
COS 516 in Fall '16: Automatic Reasoning about Software
COS 510in Spring '17: Programming Languages

e
The Rest of the Course

Assignment 7

e Due on Dean’ s Date at5 PM
« Cannot submit late (University regulations)
« Cannot use late pass

Office hours and exam prep sessions
* Will be announced on Piazza

Final exam
 When: Friday 5/20, 1:30 PM - 4:30 PM
 Where: Friend Center 101, Friend Center 108
 Closed book, 1-sheet notes, no electronic devices

o

Thank yout!

-

Course Summary

We have covered:

Programming in the large
« The C programming language
» Testing
 Building
« Debugging
* Program & programming style
« Data structures
* Modularity
« Performance

2

Course Summary

We have covered (cont.):
Under the hood

 Number systems

* Language levels tour
« Assembly language
 Machine language
 Assemblers and linkers

« Service levels tour
* Exceptions and processes
« Storage management
* Dynamic memory management
* Process management
* 1/0 management
« Signals

30

