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Context

Q. What is a combinational circuit?

A. A digital circuit (all signals are 0 or 1) with no feedback (no loops).

analog circuit: signals vary continuously sequential circuit: loops allowed (stay tuned)

Q. Why combinational circuits?

A. Accurate, reliable, general purpose, fast, cheap.

Basic abstractions
* On and off.
e Wire: propagates on/off value.
e Switch: controls propagation of on/off values through wires.

Applications. Smartphone, tablet, game controller, antilock brakes, microprocessor, ...



Wires

Wires propagate on/off values
* ON (1): connected to power.
* OFF (0): not connected to power.
e Any wire connected to a wire that is ON is also ON.
* Drawing convention: "flow" from top, left to bottom, right.

thick wires are ON

[ — 1

power /

connection

thin wires are OFF



Controlled Switch

Switches control propagation of on/off values through wires.
* Simplest case involves two connections: control (input) and output.
e control OFF: output ON
e control ON: output OFF

control input OFF control input ON

&

| |
%4— output ON

output OFF



Controlled Switch

Switches control propagation of on/off values through wires.
* General case involves three connections: control input, data input and output.
e control OFF: output is connected to input
e control ON: output is disconnected from input

control input OFF control input ON

| |

4

data input OFF > \U < output OFF data input OFF > v < output OFF
control input OFF control input ON
data input ON %% <«<—— output ON data input ON ﬁ@ < output OFF

Idealized model of pass transistors found in real integrated circuits.



Controlled switch: example implementation

A relay is a physical device that controls a switch with a magnet
e 3 connections: input, output, control.
* Magnetic force pulls on a contact that cuts electrical flow.

schematic

control off
magnet
(off)
contact
<«—spring
0 0

0—|—o 1—'—1

control on
magnet on
pulls
connection contact up
broken
N
1 1

o—f—0 r1emd—o



First level of abstraction

Switches and wires model provides separation between
physical world and logical world.

* We assume that switches operate as specified.

e That is the only assumption.

e Physical realization of switch is irrelevant to design.

Physical realization dictates performance
e Size.
* Speed.
e Power.

New technology immediately gives new computer.

Better switch? Better computer.

all built with
Basis of Moore's law. switches and gl



Switches and wires: a first level of abstraction

technology switch

technolo “information” switch
gy f relay

(1940s)

pneumatic air pressure
vacuum tube

fluid water transistor
pressure
“pass transistor” in I
integrated circuit
relay electric
(now) potential _
atom-thick
transistor

Amusing attempts that do not
scale but prove the point Real-world examples that prove the point



Switches and wires: a first level of abstraction

VLSI = Very Large Scale Integration

Technology
Deposit materials on substrate.

Key properties
Lines are wires.

Certain crossing lines are controlled switches.

Key challenge in physical world
Fabricating physical circuits with
billions of wires and controlled switches

Key challenge in “abstract” world
Understanding behavior of circuits with
billions of wires and controlled switches

Bottom line. Circuit = Drawing (!)



Circuit anatomy

connected -
wires

crossing
wires )ﬁ

switch

Need more levels of abstraction
to understand circuit behavior



Image sources

http://upload.wikimedia.org/wikipedia/commons/f/f4/1965_c1960s_vacuum_tube%2C_7025A-12AX7A%2C_QC%2C_Philips%2C_Great_Britain.jpg
http://electronics.howstuffworks.com/relay.htm
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Boolean algebra

Developed by George Boole in 1840s to study logic problems
» Variables represent true or false (1 or O for short).
* Basic operations are AND, OR, and NOT (see table below).
Widely used in mathematics, logic and computer science.

circuit design

operation Java notation logic notation (this lecture)

AND X && y XAy Xy

various notations
OR X ||y XVy X+YyY ¥ incommon use
NOT X - X x'

DeMorgan's Laws

(xy)' = (x"+ y")

Example: (stay tuned for proof) , o
(x +y)' = x'y

Relevance to circuits. Basis for next level of abstraction.

George Boole
1815-1864

&Eooua ORDERS LUNCH (

— /@:\7:5;: No,No, YES,
YES, No,NO,NO, YES ..

Copyright 2004, Sidney Harris
http://www.sciencecartoonsplus.com



Truth tables

A truth table is a systematic way to define a Boolean function
* One row for each possible set of arguments.
e Each row gives the function value for the specified arguments.
e Ninputs: 2N rows needed.

X X X y Xy X y Xx+y X NOR X
0|1 o ol o o o] o 0 1 0
1|o o 110 0o 1|1 o 1] o0 0
NOT 1 oo 1 0|1 1 oo 1
1 1|1 1 1|1 1 1o 1

AND OR NOR

XOR

XOR

© BB B O



Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic
e One row for each possibility.
 |dentity established if columns match.

Proofs of DeMorgan's laws

NOR
X y xy (x'y) x y x oy x'+y X Yy X+y (;(),+ x y x vy
o olol1 O of1|1] 1 o ol o 1 0o of|1]1
o 1lol1 0 11|00 1 o 1|1 0 o 1|10
1 olol1 1 oJo|1] 1 1 ol 1 0 1 0|01
1 11110 1 1]0]|0]| O 1 1] 1 0 1 1]0]0
\(xy)' = (x'+ y')j \ (x +y) =x'y'

NOR

x'y

\ooon—\



All Boolean functions of two variables

Q. How many Boolean functions of two variables?

A. 16 (all possibilities for the 4 bits in the truth table column).

Truth tables for all Boolean functions of 2 variables

X y ZERO AND X y XOR OR NOR EQ -y —X NAND ONE
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



Functions of three and more variables

Q. How many Boolean functions of three variables?

A. 256 (all possibilities for the 8 bits in the truth table column).

all extend to N variables

X 'y z AND OR NOR MAJ ODD Examples |
0 0 0 0 0 1 0 0 AND logical AND 0 iff any inputs is 0 (1 iff all inputs 1)
OR logical OR 1 iff any input is 1 (0 iff all inputs 0)
0 0 1 0 1 0 0 1 NOR logical NOR 0 iff any inputis 1 (1 iff all inputs 0)
0 1 0 0 1 0 0 1 MAJ majority 1 iff more inputs are 1 than 0
ODD odd parity 1 iff an odd number of inputs are 1
0 1 1 0 1 0 1 0
1 0 oflo|1f[0]o0]1 Q. How many Boolean functions of N variables?
1 0 1 0 1 0 1 0 N number of Boolean functions with N variables
4 =
1 1 olofl1lol1]o0 ; 228 2‘566
2N -
1 1 1|1|1|lofl1]1 A. 2% 4 216 = 65,536
] ] 5 232 =4,294,967,296
Some Boolean functions of 3 variables 6 264 = 18,446,744,073,709,551,616



Universality of AND, OR and NOT

Every Boolean function can be represented as a sum of products
* Form an AND term for each 1 in Boolean function.
e OR all the terms together.

X'yz+ xy'z+ xyz'+ xyz = MAJ

x
N

MA] x'yvz xy'z xyz' xyz
0 0 0

Def. A set of operations is universal if
every Boolean function can be expressed
using just those operations.

o O O o o o o

0
0
0
0
0

0

Fact. { AND, OR, NOT }is universal.

r r kO O O o
P B O O KRB Rr O O <
b © B O =B O =B o
r r B OO B O O o

COONOLEN.

0
0
®
0
0
0
0

0
0
0
0
0
®
° 1™

Expressing MAJ as a sum of products



Image sources
http://en.wikipedia.org/wiki/George_Boole#/media/File:George_Boole_color.jpg

CS.19.B.Circuits.Algebra
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basis for digital devices

Claude Shannon connected circuit design with Boolean algebra in 1937.

“Possibly the most important, and also the
most famous, master's thesis of the [20th]

— Howard Gardner

Key idea. Can use Boolean algebra to
systematically analyze circuit behavior.

A Symbolic Analysis of Relay and
Switching Circuits

By CLAUDE E.
ENROLLED

L. Introduction

N THE CONTROL and protective
ircuits of complex electrical systems
it is frequently necessary to make in-
tricate interconnections of relay contacts
and switches. Examples of these cir-

its occur in automatic telephone ex-
changes, industrial motor-control equip-
ment, and in almost any circuits designed
to perform complex operations auto-
matically. In this paper a mathematical
analysis of certain of the properties of
such networks will be made, Particular
attention will be given to the problem of
network synthesis. Given certain char-
acteristics, it is required to find a circuit
i ing these istics. The

. SHANNON
STUDENT AEE

bolic study of logic. For the synthesis
problem the desired characteristics are
first written as a system of equations, and
the equations are then manipulated into
the form representing the simplest cir-
cuit. The cireuit may then be immedi-
ately drawn from the equations. By
this method it is always possible to find
the simplest circuit containing only
series and parallel connections, and in
some cases the simplest circuit containing
any type of connection.

Our notation is taken chiefly from
symbolic logic. Of the many systems in
common use we have chosen the one
which seems simplest and most suggestive
for our interpretation. Some of our

solution of this type of problem is not
unique and methods of finding those par-
ticular circuits requiring the least num-
ber of relay contacts and switch blades
will be studied. Methods will also be
described for finding any number of cir-
cuits equivalent to  given circuit in all
operating  characteristics. It will be
shown that several of the well-known
theorems on impedance networks have
roughly analogous theorems in relay
circuits. Notable among these are the
delta-wye and star-mesh transformations,
and the duality theorem.

The method of attack on these prob-
lems may be described briefly as follows:
any circuit is represented by a set of
equations, the terms of the equations
corresponding to the various relays and
switches in the circuit. A caleulus is
developed for manipulating these equa-
tions by simple mathematical processes,
most of which are similar to ordinary
algebraic algorisms. This calculus is
shown to be exactly analogous to the
caleulus of propositions used in the sym-

Paper aumber 38-80, recommended by the AIEE

committees on communication and basic scicaces

and presented at the AIBE summer conver

Wastington, D. C., June 20-24, 1035, Manuseri

submitted March 1, 1935; made available for
. io3s,

preprinting May 27, 1

E. Sttannox is a reseasch assistant i the

Vanoevar Bush, and Doctor S. H. Caldwell, all of
MIT, for helplud encouragement and criticism.

1938, Vor. 57

p , as node, mesh, delta, wye,
ete,, is borrowed from ordinary network

closed cireuit, and the symbol 1 (unity) to
represent the hindrance of an open cir-
cuit, Thus when the circuit a-b is open
X, = 1 and when closed X, = 0.
Two hindrances X, and X will be
said to be equal if whenever the circuit
a-b is open, the circuit cd is open, and
whenever a-b is closed, c-d is closed.
Now et the symbol + (plus) be defined
to mean the series connection of the two-
terminal circuits whose hindrances are
added together. Thus X, + Xe is the
hindrance of the circuit a-d when b and ¢
are connected together. Similarly the
product of two hindrances XoyXe or
more briefly XoXe will be defined to
mean the hindrance of the cireuit formed
by connecting the circuits -5 and ¢-d in
parallel. A relay contact or switch will
be represented in a circuit by the symbol
in figure 1, the letter being the cor-
responding hindrance function. Figure
2 shows the interpretation of the plus
sign and figure 3 the multiplication sign.
This choice of symbols makes the ma-
nipulation of hindrances very similar to
ordinary numerical algebra.

Itis evident that with the above defi-
nitions the following postulates will hold:

Postulates
L a 00 A closed circuit in parallel with a closed circuit is & closed
circuit,
b 141=1 An open circuit in series with an open circuit is an open
circuit,

2 6 14+0=0+1=1 An open circuit in serics with a closed circuit in either
order (i.c., whether the open circuit is to the right or left
of the closed circuit) is an open circuit.

b 0-1=1.0=0 A closed circuit in parallel with an open circuit in either
order is a closed circuit.
3 a2 0+0=0 A closed circuit in series with a closed circuit is a closed
circuit.
bo11= An open circuit in parallel with an open circuit is an open
circuit

4. Atany given time cither X = Qor X = 1.

theory for similar concepts in switching
circuits.
IL_ Series-Parallel

Two-Terminal Circuits

FUNDAMENTAL DEFINITIONS
AND POSTULATES

We shall limit our treatment to cir-
cuits containing only relay contacts and
switches, and therefore at any given time
the circuit between any two terminals
must be either open (infinite impedance)
or closed (zero impedance). Let us as-
sociate a symbol X, or more simply X,
with the terminals o and b. This vari-
able, a function of time, will be called
the hindrance of the two-terminal cir-
cuit a-b. The symbol 0 (zero) will be
used to represent the hindrance of a

Shannon—Relay Circuits

These are sufficient to develop all the

corems which will be used in connection
with circuits containing only series and
parallel connections. The postulates are
arranged in pairs to emphasize a duality
relationship between the operations of
addition and multiplication and the
quantities zero and one. Thus, if in
any of the a postulates the zero's are re-
placed by one’s and the multiplications
by additions and vice versa, the cor-
responding b postulate will result. This
fact is of great importance. It gives
cach theorem a dual theorem, it being
necessary to prove only one to establish
both. The only one of these postulates
which differs from ordinary algebra is 1
However, this enables great simplifica-
tons in the manipulation of these
symbols.

713

Claude Shannon

1916-2001

22



A second level of abstraction: logic gates

boolean notation truth table classic our symbol under the cover proof
function symbol circuit (gate)
' X | X , : X x' e
NOT X o|1 x — ro— x X =— = = X ¥ 1 iff xis O
1]o0
s xy «y
(. - L] v liffxandy
' 0 1|0 x= - —(x+y)' e (x+y)
NOR (x +y) E | 0 I e vy NOR 1 are both 0
1 1]0
0 0| & — Xy 1 1 _
[ L1 NOR ~
OR X+ y 0 H ! - ey OR XV T Y N
1 1|1 x+y = (x + y))
x y AND X X y _|I ll
0 0] 0 . I |
AND Xy : 1| . y 7 AND iy Xy NOR
1 0] o0




Multiway OR gates

OR gates with multiple inputs.
e 1 if anyinputis 1.
e O if all inputs are 0.

classic symbol our symbol
Uuvwxyz UVWXYy 2z
I

bl L 111111
OR

|
U+V+W+Xx+y+2z

Multiway OR gates are oriented vertically _____
in our circuits. Learn to recognize them!

under the cover
UVWXYyZz

0 if inputs are 000000;
1 if any input is 1

examples
011000

+H-HH =

000001

000000O0

A

24



Multiway generalized AND gates

Multiway generalized AND gates.
* 1 for exactly 1 set of input values.
e O for all other sets of input values.

gate function

uv wxyv 2z

AND UVWXyZ
uv wxyv 2z
generalized u'vwx'y'z
NOR Uuvwxyz

uIVlWleylzl

t

sameas (U+V+W+X+y+2)

Might also call these "generalized NOR gates"; we consistently use AND.

inputs that output 1
T 11111

0000O0O

-

another set of inputs

01 1T000O
011000

0
010100

~-HHH-o



Pop quiz on generalized AND gates

Q. Give the Boolean function computed by these gates.
Q. Also give the inputs for which the outputis 1.

uvwxy z

Sdlida

uv wxy z

kL ¥

x
<

®
-TN —t— N

x

-T<
N

x
<
N

I

X
<
N

e
+

Sk

26



Pop quiz on generalized AND gates

Q. Give the Boolean function computed by these gates.

Q. Also give the inputs for which the output is 1.

uv wxy z

M uv'wxv'z 101101

uv wxy z

[ I}el}f I}e u'vwx'v'z 011001

Get the idea? If not, replay this slide, like flash cards.

Note. From now on, we will not label these gates.

x
<

-TN —t— N

x

-T<
N

x

<
N

!

f

x

<
N

x

<
N

e
+

<
N

P
T

x
<

<
N

000

001

010

011

100

101

110

111



A useful combinational circuit: decoder

Decoder
e ninput lines (address).
e 21 outputs.
e Addressed output is 1.
» All other outputs are O.

Example: 3-to-8 decoder

110 =6

W/

outputs 0-5
and 7 are O

output 6
is 1

28



A useful combinational circuit: decoder

Decoder

e ninput lines (address).

e 21 outputs.
e Addressed output is 1.

» All other outputs are O.

Implementation

Example: 3-to-8 decoder

e Use all 2" generalized AND gates with n inputs.
* Only one of them matches the input address.

Application (next lecture)

* Select a memory word for read/write.

e [Use address bits of instruction from IR.]

110 =6

W/

™

T8

outputs 0-5
and 7 are O

output 6
is 1

29



Another useful combinational circuit: demultiplexer (demux)

Demultiplexer
e n address inputs.
e |1 data input with value x.
e 21 outputs.

* Addressed output has value x.

o All other outputs are O.

Example: 3-to-8 demux

101

W

X

js/

outputs 0-4
and 6-7 are O

output 5
has value x

30



Another useful combinational circuit: demultiplexer (demux)

Demultiplexer
e n address inputs.
e |1 data input with value x.
e 21 outputs.
* Addressed output has value x.
o All other outputs are O.

Example: 3-to-8 demux

Implementation
e Start with decoder.
* Add AND x to each gate.

Application (next lecture)
e Turn on control wires to implement instructions.
e [Use opcode bits of instruction in IR.]

outputs 0-4
and 6-7 are O

output 5

:/ has value x

31



Decoder/demux

Decoder/demux
e n address inputs.
e |1 data input with value x.
e 27 output pairs.
» Addressed output pair has
value (1, x).
» All other outputs are O.

Example: 3-to-8 decoder/demux

output pairs 0-4
and 6-7 are (0, 0)

|

I output pair 5
— has value (1, x)

32



Decoder/demux

131 =5 X
\ f‘/
DeCOder/demljlx Example: 3-to-8 decoder/demux <
e n address inputs. -
e 1 data input with value x. F
e 27 output pairs. L
i .3
* Addressed output pair has L —
value (1, x). L e
» All other outputs are O. ] L—

; output pairs 0-4
Implementation and 6.7 are (0, 0)
* Add decoder output to demux.

1=
x

1%
[
(X

o output pair 5
— has value (1, x)

Application (next lecture) -}5}3{‘:

* Access and control write of memory word

e [Use addr bits of instruction in IR.] -}5}1!5\4‘:

33



Creating a digital circuit that computes a boolean function: majority

Use the truth table

* |dentify rows where the function is 1.
e Use a generalized AND gate for each.
e OR the results toaether.

Example 1: Majority function

x y z MAJ
0o 0 0] o0
0o 0 10
0o 1 0] o0
0o 1 1 @
1 0 o0]o
1 o 1 |(2)
1 1 o |(1)
1 01 1 @

MAJ = x'yz+ xy'z + xyz'+ xyz

term

X'yz

Xy'z
Xyz

Xyz

gate

33

multiway
Xyz OR gate

l

T

s

T

£

kx|

X

MAJ
majority circuit

110

W

]k

MRS

(

<

I

[ |

[

example

MAJ

S~ MAJis 1

34



Creating a digital circuit that computes a boolean function: odd parity

Use the truth table

* |dentify rows where the function is 1.
e Use a generalized AND gate for each.
e OR the results toaether.

Example 2: Odd parity function

x

Pk P P R O O O O
R O O B Rr O O <

1

ODD =x'y'z+ x'yz'+ xy'z'+ xyz

o RBr O B O KB O N

=

ODD
0

term
X'y'z

X'yz

xy'z

Xyz

gate

kL

B OE

Xyz

multiway
OR gate

l

™

™

IR

R |

X

ODD

odd parity circuit

)

example

OoDD

S~ 0DDis 0
35



Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

Ingredients
* OR gates.
e NOT gates.
e NOR gates >use to make generalized AND gates

e Wire.

Method
e Step 1: Represent input and output with Boolean variables.
e Step 2: Construct truth table to define the function.
e Step 3: Identify rows where the function is 1.
e Step 4: Use a generalized AND for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function.
Caveat: Circuit might be huge (stay tuned).

P PR PR RO O O O Xx
R R O O R KRB O O X<
R O Rr O R O F O N

GO0 = = =

PR

Xyz

MAJ

IR

F

MAJ

P P PR RO O O O X%

Xyz

P PR O O R KRB O O <
R O r O Rr O K O N

O--0-00- §

PR

! ODD

ODD

36



Pop quiz on combinational circuit design

Q. Design a circuit to implement XOR(x, v).

37



Pop quiz on combinational circuit design

Q. Design a circuit to implement XOR(x, v).

A. Use the truth table
* |dentify rows where the function is 1.
e Use a generalized AND gate for each.
* OR the results toaether.

XOR function

XOR
0 term  gate

ONRT"
<:> xy' —ﬁL

R R O O X
R O BB O X<

0

XOR = X'y + xy'

circuit

Xy

™

™

interface

XOR

38



Encapsulation

Encapsulation in hardware design mirrors familiar principles in software design
 Building a circuit from wires and switches is the implementation.
* Define a circuit by its inputs, controls, and outputs is the API.
* We control complexity by encapsulating circuits as we do with ADTs.

|
|
pd
(@)
_|

|

|
|

ODD

I
DECODER

DECODER/DEMUX

DEMULTIPLEXER

MAJ |
XOR -

OR



Image sources

http://en.wikipedia.org/wiki/Claude_Shannon#/media/File:Claude_Elwood_Shannon_(1916-2001).jpg
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Let's make an adder circuit!

Adder
e Compute z=x + vy for
n-bit binary integers.

* 2ninputs. 0 0 0 ] 0 ] ] 23
 n outputs. ¢ 0 ‘ ‘ 0 0 0 + 49
e Ignore overflow. ADD

Example: 8-bit adder

carry
out

+
oo O O
—|lo o —
o|— o —
oO|— — O
—|lo o —
ol = -
oo = —
o|— — O

42



Let's make an adder circuit!

Adder

e Compute z=x + vy for
n-bit binary integers.

e 2ninputs.
* n outputs.

* Ignore overflow.

Example: 8-bit adder

carry
out

Cs C7 Co Cs (4
X7 X6 Xs Xa

+ V7 V6 Y5 Ya

C3
X3
V3

(6]
X2

y2

Ci
X1

)4

Xo
Yo

Z7 Zo 2Zs Z4

Z3

22

V4

20

43



Let's make an adder circuit!

Goal: z=x+ y for 8-bit integers. Cs C7 C6 Cs ca 3 2 &1 O

. . . X7 X6 Xs X4 X3 X2 X1 Xo
Strawman solution: Build truth tables for each output bit.

27 Z6 Zs Z4 23 22 Z1 Z0

X7 X6 Xs Xa X3 X2 X1 Xo Y7 Ve Vs Va Y3 V2o Vi Yo Ca Z7 Ze Zs Z4 23 22 Z1 20

O 0O0OOOOOOOOOOOUO OO OTQO]|OjolO]O}|O]O]O]O]O
O 0O0OO0OOOUOUOUOOOOOUO OO OT]OojolO]lO}T1]O]O]O]T
O 0O0OO0OOOOOOOOOOUOTOolojojo]rf|otojofryo
8-bit adder
truthtable 0 0 0 0 0O 0O OO OOOUOGOT 1T|Oo(Oojofr}jrjojof1]1 216 = 65536 rows!

Q. Not convinced this a bad idea?

A. 128-bit adder: 2256 rows >> # electrons in universe!



Let's make an adder circuit!

Goal: z=x+ y for 8-bit integers.

Do one bit at a time.

* Build truth table for carry bit.

e Build truth table for sum bit.

Ci Cir1  MAJ
0 0

x
=

carry bit

R R B B O O O O
R R O O KB B O O
R O B O KB O KL O
R R B O B O O
R R B O B O O

A surprise!

e Carry bit is MAJ.
e Sum bit is ODD.

sum bit

x

P B B B O O O O

=

R, B O O rBr B O O

Q

) © B O B O B O

Cs C7 C6 Cs ¢4 3 2 a1 O
X7 X6 Xs Xa X3 X2 X1 Xo

T Y7 Ve ¥Vs Va y3 V2 Y1 Yo
Z7 Ze Zs Z4 Z3 Z2 Z1 20

Zi ODD

0 0

1 1

1 1

0 0

1 1

0 0

0 0

1 1

45



Let's make an adder circuit!

Goal: z=x+ y for 4-bit integers.

Do one bit at a time.
e Carry bit is MAJ.
e Sum bit is ODD.

e Chain 1-bit adders
to "ripple" carries.
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X7 V7 X6 V6 X5 V5 X4 Va4 X3 V3 X2 V2 X1 Vi X0 Yo
Y Y Y Y \ Y \ Y Y/
€7 €6 65 L Ca 63 C2 L €0
MA)J MAJ MAJ MA)J MA) MA)J MAJ MA)J
] [ ] ] ] ] ]
ODD ODD ODD ODD ODD ODD ODD ODD
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An 8-bit adder circuit
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Layers of abstraction

Lessons for software design apply to hardware
* Interface describes behavior of circuit.

e Implementation gives details of how to build it.
* Exploit understanding of behavior at each level.

Layers of abstraction apply with a vengeance
e On/off.
e Controlled switch. [relay, pass transistor]
e Gates. [NOT, OR, AND]
* Boolean functions. [MAJ, ODD]
* Adder.
e Arithmetic/Logic unit (next).
e CPU (next lecture, stay tuned).

Vastly simplifies design of complex systems and enables use of new technology at any layer

PR

MAJ

OoDD

=

4

.:“_i

MAJ

MAJ

MAJ

MAJ

MAJ
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MAJ
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1
oDD

1
oDD

0oDD
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19 Combinational Circuits

e Building blocks

* Boolean algebra

e Digital circuits

* Adder circuit

* Arithmetic/logic unit
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Next layer of abstraction: modules, busses, and control lines

Basic design of our circuits
e Organized as modules (functional units of TOY: ALU, memory, register, PC, and IR).
* Connected by busses (groups of wires that propagate information between modules).
e Controlled by control lines (single wires that control circuit behavior).

Convent.|ons input <
 Bus inputs are at the top, busses
input connections are at the left.
e Bus outputs are at the bottom,
. . control
output connections are at the right. lines <
e Control lines are blue.

T | Output
. . . ] bUS
These conventions make circuits easy to understand.
(Like style conventions in coding.)
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Arithmetic and logic unit (ALU) module

Ex. Three functions on 8-bit words pnpUL

e Two input busses (arguments). .

e One output bus (result). ALU (8 b’t)

e Three control lines.
ADD

control
lines XOR

AND
output

bus
52



Arithmetic and logic unit (ALU) module

Ex. Three functions on 8-bit words input

USRS —_—
-'IC')womput busses (arguments). %%ﬂ = e & & B,
e One output bus (result). %LL %LL ol | (e | (| (e (el (e
e Three control lines. ﬁ ﬁ Tl (] ([l |l | ol [firl L
o Left-right shifter circuits omitted ii—kL; iﬁk; (e ([T || | e (], | T,
(see book for details). E%t‘ E%i_-ﬁﬂL_ ST P P P
Implementation % % Ll T @_ il @_
e One circuit for each function. e | ;'@L; ﬂ; @P; @P; ﬂ; @;‘
e Compute all values in parallel. i i i i @»7 (m«r €2
1> 1) -1) 1> 1> 1> 1> 1)
Q. How do we select desired output? ~ control EsZl EsZ Es7 | Esd s Es2 s Es:
e e
A. "One-hot muxes" (see next slide). [ 3 3 3 3 3 3 } }

"Calculator" at the heart of your computer. ‘/

ADD

XOR

AND

output
bus
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A simple and useful combinational circuit: one-hot multiplexer

One-hot multiplexer

selection .
e m selection lines inputs N\ o _ B \
. —— all other
* mdata Inputs 0 select —— < data inputs
input 3 ignored
e 1 output. N - 1 N
) ] ) this is a precondition — —
e At most one selection line is 1. «<— unlike other circuits 1 data
. we consider input 3 —__
e Output has value of selected input. 5 is 0
2
|‘\output
3 isO
T T
4 __
data A4 —
inputs
data /
input 3 —
| is 1
output
P I‘\output

is 1
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A simple and useful combinational circuit: one-hot multiplexer

multiway

_ OR gate
One-hot multiplexer l
e m selection lines 0 —

* m data inputs
e | output.

1
e At most one selection line is 1. 1 !,!,

e Qutput has value of selected input.

AND gate—0> P

Implementation

3
e AND corresponding selection and data inputs. 3 !,!,

e OR all results (at most one is 1). v

Applications e
* Arithmetic-logic unit (previous slide). L*
e Main memory (next lecture).

select

input 3 N

data ﬂ

input 3
is 0

‘\output
isO
data ﬂ-
input 3
is 1
4
\output

Important to note. No direct connection from input to output. a virtual selection switch

is 1
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Summary: Useful combinational circuit modules

ALU

DEMUX
DECODER/DEMUX
|

Next: Registers, memory, connections, and control.
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