
http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

19. Combinational
Circuits

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Section 6.1

19. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder circuit
•Arithmetic/logic unit

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.19.A.Circuits.Basics

Context

Q. What is a combinational circuit?

A. A digital circuit (all signals are 0 or 1) with no feedback (no loops).

3

Q. Why combinational circuits?

A. Accurate, reliable, general purpose, fast, cheap.

Applications. Smartphone, tablet, game controller, antilock brakes, microprocessor, …

Basic abstractions

• On and off.

• Wire: propagates on/off value.

• Switch: controls propagation of on/off values through wires.

analog circuit: signals vary continuously sequential circuit: loops allowed (stay tuned)

4

Wires

Wires propagate on/off values
• ON (1): connected to power.
• OFF (0): not connected to power.
• Any wire connected to a wire that is ON is also ON.
• Drawing convention: "flow" from top, left to bottom, right.

power 
connection

1

thick wires are ON

1

1

thin wires are OFF

0

5

Switches control propagation of on/off values through wires.
• Simplest case involves two connections: control (input) and output.
• control OFF: output ON
• control ON: output OFF

Controlled Switch

control input OFF

output ON

control input ON

output OFF

6

Switches control propagation of on/off values through wires.
• General case involves three connections: control input, data input and output.
• control OFF: output is connected to input
• control ON: output is disconnected from input

Controlled Switch

control input OFF

control input OFF control input ON

control input ON

data input OFF output OFF

data input ON output ON

data input OFF output OFF

data input ON output OFF

Idealized model of pass transistors found in real integrated circuits.

7

A relay is a physical device that controls a switch with a magnet
• 3 connections: input, output, control.
• Magnetic force pulls on a contact that cuts electrical flow.

Controlled switch: example implementation

schematicschematicschematicschematic control off control on

contact
connection

broken

magnet on
pulls

contact up
magnet

(off)

spring

First level of abstraction

Switches and wires model provides separation between
physical world and logical world.
• We assume that switches operate as specified.
• That is the only assumption.
• Physical realization of switch is irrelevant to design.

Physical realization dictates performance
• Size.
• Speed.
• Power.

New technology immediately gives new computer.

Better switch? Better computer.

Basis of Moore's law.

8

all built with
"switches and wires"

Switches and wires: a first level of abstraction

9

technology “information” switch

pneumatic air pressure

fluid
water

pressure

relay
(now)

electric
potential

Amusing attempts that do not
scale but prove the point

technology switch

relay
(1940s)

vacuum tube

transistor

“pass transistor” in
integrated circuit

atom-thick
transistor

Real-world examples that prove the point

Switches and wires: a first level of abstraction

VLSI = Very Large Scale Integration

Technology
 Deposit materials on substrate.

Key properties
 Lines are wires. 
 Certain crossing lines are controlled switches.

Key challenge in physical world
 Fabricating physical circuits with
 billions of wires and controlled switches

Key challenge in “abstract” world 
 Understanding behavior of circuits with
 billions of wires and controlled switches

Bottom line. Circuit = Drawing (!)

10

11

Circuit anatomy

Need more levels of abstraction
to understand circuit behavior

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.19.A.Circuits.Basics

Image sources

 http://upload.wikimedia.org/wikipedia/commons/f/f4/1965_c1960s_vacuum_tube%2C_7025A-12AX7A%2C_QC%2C_Philips%2C_Great_Britain.jpg

 http://electronics.howstuffworks.com/relay.htm

19. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder circuit
•Arithmetic/logic unit

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.19.B.Circuits.Algebra

Boolean algebra

Developed by George Boole in 1840s to study logic problems
• Variables represent true or false (1 or 0 for short).
• Basic operations are AND, OR, and NOT (see table below).

Widely used in mathematics, logic and computer science.

14

George Boole
1815−1864

operation Java notation logic notation circuit design
(this lecture)

AND x && y x⋀y xy

OR x || y x⋁y x + y

NOT ! x ¬x x'

Relevance to circuits. Basis for next level of abstraction.

various notations
in common use

(xy) ' = (x ' + y ')
(x + y) ' = x'y'

Example: (stay tuned for proof)

DeMorgan's Laws

Copyright 2004, Sidney Harris 
http://www.sciencecartoonsplus.com

15

Truth tables

A truth table is a systematic way to define a Boolean function
• One row for each possible set of arguments.
• Each row gives the function value for the specified arguments.
• N inputs: 2N rows needed.

AND

x y xy

0 0 0

0 1 0

1 0 0

1 1 1

OR

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

XOR

x y XOR

0 0 0

0 1 1

1 0 1

1 1 0

NOR

x y NOR

0 0 1

0 1 0

1 0 0

1 1 0

NOT

x x'

0 1

1 0

16

Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic
• One row for each possibility.
• Identity established if columns match.

x y xy
(xy)

'

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

x y x' y' x ' + y '

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

Proofs of DeMorgan's laws

x y x + y
(x +
y) '

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

x y x' y' x 'y '

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

(xy) ' = (x ' + y ') (x + y) ' = x'y'

NOR NOR

17

All Boolean functions of two variables

x y ZERO AND x y XOR OR NOR EQ ¬y ¬x NAND ONE

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Q. How many Boolean functions of two variables?

A. 16 (all possibilities for the 4 bits in the truth table column).

Truth tables for all Boolean functions of 2 variables

18

Functions of three and more variables

x y z AND OR NOR MAJ ODD

0 0 0 0 0 1 0 0

0 0 1 0 1 0 0 1

0 1 0 0 1 0 0 1

0 1 1 0 1 0 1 0

1 0 0 0 1 0 0 1

1 0 1 0 1 0 1 0

1 1 0 0 1 0 1 0

1 1 1 1 1 0 1 1

Q. How many Boolean functions of three variables?

A. 256 (all possibilities for the 8 bits in the truth table column).

Q. How many Boolean functions of N variables?

Some Boolean functions of 3 variables

N number of Boolean functions with N variables

2 24 = 16
3 28 = 256
4 216 = 65,536
5 232 = 4,294,967,296
6 264 = 18,446,744,073,709,551,616

AND logical AND 0 iff any inputs is 0 (1 iff all inputs 1)

OR logical OR 1 iff any input is 1 (0 iff all inputs 0)

NOR logical NOR 0 iff any input is 1 (1 iff all inputs 0)

MAJ majority 1 iff more inputs are 1 than 0

ODD odd parity 1 iff an odd number of inputs are 1

A. 2(2N)

Examples
all extend to N variables

19

Universality of AND, OR and NOT

Every Boolean function can be represented as a sum of products
• Form an AND term for each 1 in Boolean function.
• OR all the terms together.

x y z MAJ x'yz xy'z xyz' xyz

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 1

1 1 0 1 0 0 1 0 1

1 1 1 1 0 0 0 1 1

Expressing MAJ as a sum of products

Fact. { AND, OR, NOT } is universal.

Def. A set of operations is universal if
every Boolean function can be expressed
using just those operations.

x'yz + xy'z + xyz' + xyz = MAJ

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.19.B.Circuits.Algebra

Image sources
 http://en.wikipedia.org/wiki/George_Boole#/media/File:George_Boole_color.jpg

19. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder circuit
•Arithmetic/logic unit

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.19.C.Circuits.Digital

A basis for digital devices

Claude Shannon connected circuit design with Boolean algebra in 1937.

22

Claude Shannon
1916−2001“ Possibly the most important, and also the

most famous, master's thesis of the [20th]

− Howard Gardner

Key idea. Can use Boolean algebra to
systematically analyze circuit behavior.

23

x y NOR
0 0 1
0 1 0
1 0 0
1 1 0

x y OR
0 0 0
0 1 1
1 0 1
1 1 1

x y AND
0 0 0
0 1 0
1 0 0
1 1 1

x x'
0 1
1 0

truth table

NOT

boolean
function notation

x '

NOR (x + y)'

OR x + y

AND xy

under the cover
circuit (gate)

proof

1 iff x is 0

1 iff x and y
are both 0

A second level of abstraction: logic gates

x+y = ((x + y)')'

 NOR ¬

xy = (x ' + y ')'

 NOR

¬ ¬

classic
symbol our symbol

¬x x'

AND

x y

xy

 OR

x y
x+y

 NOR

x y
(x+y)'(x+y)'

x x'

yx
(x+y)'

yx
x+y

xy

x y

24

Multiway OR gates

OR gates with multiple inputs.
• 1 if any input is 1.
• 0 if all inputs are 0.

classic symbol
u v w x y z

u+v+w+x+y+z 0 if inputs are 000000;
1 if any input is 1

our symbol

u+v+w+x+y+z
u v w x y z

 OR

examples
0 1 1 0 0 0

1

0 0 0 0 0 1
1

0 0 0 0 0 0

0

Multiway OR gates are oriented vertically 
in our circuits. Learn to recognize them!

under the cover
u v w x y z

u+v+w+x+y+z

25

Multiway generalized AND gates

Multiway generalized AND gates.
• 1 for exactly 1 set of input values.
• 0 for all other sets of input values.

generalized

u v w x y z

u 'vwx'y 'z

NOR
u v w x y z 0 0 0 0 0 0

1

0 1 0 1 0 0

0

0 1 1 0 0 0

01

0 1 1 0 0 1

u'v 'w 'x 'y 'z '

same as (u + v + w + x + y + z)'

Might also call these "generalized NOR gates"; we consistently use AND.

1 1 1 1 1 1

1

inputs that output 1

AND

u v x y zw

uvwxyz

gate function
0 1 1 0 0 0

0

another set of inputs

Pop quiz on generalized AND gates

26

Q. Give the Boolean function computed by these gates.

Q. Also give the inputs for which the output is 1.

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

u v w x y z

u w x y zv

Pop quiz on generalized AND gates

27

Q. Give the Boolean function computed by these gates.

Q. Also give the inputs for which the output is 1.

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

u v w x y z

u w x y zv

Note. From now on, we will not label these gates.

Get the idea? If not, replay this slide, like flash cards.

xyz 111

xyz ' 110

xy 'z 101

xy 'z ' 100

x 'yz 011

x 'yz ' 010

x 'y 'z 001

x 'y 'z ' 000

u'vwx'y 'z 011001

uv 'wxy 'z 101101

A useful combinational circuit: decoder

Decoder
• n input lines (address).
• 2n outputs.
• Addressed output is 1.
• All other outputs are 0.

28

110 = 6

0

1

2

3

4

5

6

7

output 6
is 1

Example: 3-to-8 decoder

outputs 0-5
and 7 are 0

29

A useful combinational circuit: decoder

Implementation
• Use all 2n generalized AND gates with n inputs.
• Only one of them matches the input address.

110 = 6

Application (next lecture)
• Select a memory word for read/write.
• [Use address bits of instruction from IR.]

Decoder
• n input lines (address).
• 2n outputs.
• Addressed output is 1.
• All other outputs are 0.

Example: 3-to-8 decoder

output 6
is 1

outputs 0-5
and 7 are 0

Another useful combinational circuit: demultiplexer (demux)

Demultiplexer
• n address inputs.
• 1 data input with value x.
• 2n outputs.
• Addressed output has value x.
• All other outputs are 0.

30

101 = 5 x

output 5
has value x

outputs 0-4
and 6-7 are 0

0

1

2

3

4

5

6

7

Example: 3-to-8 demux

Another useful combinational circuit: demultiplexer (demux)

Demultiplexer
• n address inputs.
• 1 data input with value x.
• 2n outputs.
• Addressed output has value x.
• All other outputs are 0.

31

101 = 5 x

Implementation
• Start with decoder.
• Add AND x to each gate.

Application (next lecture)
• Turn on control wires to implement instructions.
• [Use opcode bits of instruction in IR.]

output 5
has value x

outputs 0-4
and 6-7 are 0

0

1

2

3

4

5

6

7

Example: 3-to-8 demux

32

Decoder/demux
101 = 5 x

output pair 5
has value (1, x)

output pairs 0-4
and 6-7 are (0, 0)

0

1

2

3

4

5

6

7

Decoder/demux
• n address inputs.
• 1 data input with value x.
• 2n output pairs.
• Addressed output pair has

value (1, x).
• All other outputs are 0.

Example: 3-to-8 decoder/demux

33

Decoder/demux

Implementation
• Add decoder output to demux.

Application (next lecture)
• Access and control write of memory word
• [Use addr bits of instruction in IR.]

Decoder/demux
• n address inputs.
• 1 data input with value x.
• 2n output pairs.
• Addressed output pair has

value (1, x).
• All other outputs are 0.

101 = 5 x

output pair 5
has value (1, x)

output pairs 0-4
and 6-7 are (0, 0)

Example: 3-to-8 decoder/demux

34

Creating a digital circuit that computes a boolean function: majority

Use the truth table
• Identify rows where the function is 1.
• Use a generalized AND gate for each.
• OR the results together.

x y z MAJ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ = x'yz + xy'z + xyz' + xyz

xy'z

xyz'

xyz

Example 1: Majority function

MAJ

xyz

majority circuit example

110

MAJ is 1

x'yz

gateterm

multiway
OR gate

MAJ

35

Creating a digital circuit that computes a boolean function: odd parity

Use the truth table
• Identify rows where the function is 1.
• Use a generalized AND gate for each.
• OR the results together.

x y z ODD

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

ODD = x'y'z + x'yz' + xy'z' + xyz

110

example
ODD is 0

xyz

xy'z'

x'yz'

x'y'z

gateterm

ODD

ODD

xyz

odd parity circuit

multiway
OR gateExample 2: Odd parity function

36

Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

Ingredients
• OR gates.
• NOT gates.
• NOR gates.
• Wire.

Method
• Step 1: Represent input and output with Boolean variables.
• Step 2: Construct truth table to define the function.
• Step 3: Identify rows where the function is 1.
• Step 4: Use a generalized AND for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function.
Caveat: Circuit might be huge (stay tuned).

x y z ODD

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

x y z MAJ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ

xyz

MAJ

ODD

xyz

ODD

use to make generalized AND gates

37

Pop quiz on combinational circuit design

Q. Design a circuit to implement XOR(x, y).

38

Pop quiz on combinational circuit design

A. Use the truth table
• Identify rows where the function is 1.
• Use a generalized AND gate for each.
• OR the results together.

XOR = x'y + xy'

x y XOR

0 0 0

0 1 1

1 0 1

1 1 0

XOR function

xy'

Q. Design a circuit to implement XOR(x, y).

xy

XOR

circuit

x'y

term gate

interface

XOR

39

Encapsulation

Encapsulation in hardware design mirrors familiar principles in software design
• Building a circuit from wires and switches is the implementation.
• Define a circuit by its inputs, controls, and outputs is the API.
• We control complexity by encapsulating circuits as we do with ADTs.

D
EC

O
D

ER

D
EM

U
LT

IP
LE

X
ER

MAJ

ODD

XOROR

NOT

AND

D
EC

O
D

ER
/D

EM
U

X

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.19.C.Circuits.Digital

Image sources

 http://en.wikipedia.org/wiki/Claude_Shannon#/media/File:Claude_Elwood_Shannon_(1916-2001).jpg

19. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder circuit
•Arithmetic/logic unit

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.19.D.Circuits.Adder

Let's make an adder circuit!

Adder
• Compute z = x + y for

n-bit binary integers.
• 2n inputs.
• n outputs.
• Ignore overflow.

42

Example: 8-bit adder

 23
+ 490 0 1 1 0 0 0

0 0 0 1 0 1 1

ADD

0 0 1 1 0 1 1 1 0
0 0 0 1 0 1 1 1

+ 0 0 1 1 0 0 0 1
 0 1 0 0 1 0 0 0

carry 
out

0 1 0 0 1 0 0 = 72

Let's make an adder circuit!

Adder
• Compute z = x + y for

n-bit binary integers.
• 2n inputs.
• n outputs.
• Ignore overflow.

43

Example: 8-bit adder

ADD

x7 y7 x6 y6 x5 y5 x4 y4 x3 y3 x2 y2 x1 y1 x0 y0

z7 z6 z5 z4 z3 z2 z1 z0

c8 c7 c6 c5 c4 c3 c2 c1 0
x7 x6 x5 x4 x3 x2 x1 x0

+ y7 y6 y5 y4 y3 y2 y1 y0

 z7 z6 z5 z4 z3 z2 z1 z0

carry 
out

44

Let's make an adder circuit!

Goal: z = x + y for 8-bit integers.

Strawman solution: Build truth tables for each output bit.

8-bit adder
truth table

x7 x6 x5 x4 x3 x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y0 c4 z7 z6 z5 z4 z3 z2 z1 z0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1

. .

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0

1 1

Q. Not convinced this a bad idea?

A. 128-bit adder: 2256 rows >> # electrons in universe!

216 = 65536 rows!

c8 c7 c6 c5 c4 c3 c2 c1 0
x7 x6 x5 x4 x3 x2 x1 x0

+ y7 y6 y5 y4 y3 y2 y1 y0

 z7 z6 z5 z4 z3 z2 z1 z0

45

Let's make an adder circuit!

Goal: z = x + y for 8-bit integers.

Do one bit at a time.
• Build truth table for carry bit.
• Build truth table for sum bit.

xi yi ci ci+1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

carry bit

xi yi ci zi

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

sum bit

MAJ

0

0

0

1

0

1

1

1

ODD

0

1

1

0

1

0

0

1

A surprise!
• Carry bit is MAJ.
• Sum bit is ODD.

c8 c7 c6 c5 c4 c3 c2 c1 0
x7 x6 x5 x4 x3 x2 x1 x0

+ y7 y6 y5 y4 y3 y2 y1 y0

 z7 z6 z5 z4 z3 z2 z1 z0

46

Let's make an adder circuit!

Goal: z = x + y for 4-bit integers.

x7 y7 x6 y6 x5 y5 x4 y4 x3 y3 x2 y2 x1 y1 x0 y0

z7 z6 z5 z4 z3 z2 z1 z0

c8 c7 c6 c5 c4 c3 c2 c1 0
x7 x6 x5 x4 x3 x2 x1 x0

+ y7 y6 y5 y4 y3 y2 y1 y0

 z7 z6 z5 z4 z3 z2 z1 z0

Do one bit at a time.
• Carry bit is MAJ.
• Sum bit is ODD.
• Chain 1-bit adders

to "ripple" carries.

c7 c6 c5 c4 c3 c2 c1 c0

47

An 8-bit adder circuit

48

Layers of abstraction

Lessons for software design apply to hardware
• Interface describes behavior of circuit.
• Implementation gives details of how to build it.
• Exploit understanding of behavior at each level.

Layers of abstraction apply with a vengeance
• On/off.
• Controlled switch. [relay, pass transistor]
• Gates. [NOT, OR, AND]
• Boolean functions. [MAJ, ODD]
• Adder.
• Arithmetic/Logic unit (next).
• CPU (next lecture, stay tuned).

Vastly simplifies design of complex systems

NOT OR AND

and enables use of new technology at any layer

MAJ ODD

ADD

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.19.D.Circuits.Adder

19. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder circuit
•Arithmetic/logic unit

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.19.E.Circuits.ALU

Next layer of abstraction: modules, busses, and control lines

Basic design of our circuits
• Organized as modules (functional units of TOY: ALU, memory, register, PC, and IR).
• Connected by busses (groups of wires that propagate information between modules).
• Controlled by control lines (single wires that control circuit behavior).

51

Conventions
• Bus inputs are at the top, 

input connections are at the left.
• Bus outputs are at the bottom, 

output connections are at the right.
• Control lines are blue.

These conventions make circuits easy to understand.
(Like style conventions in coding.)

output
bus

input
busses

control
lines

Arithmetic and logic unit (ALU) module

Ex. Three functions on 8-bit words
• Two input busses (arguments).
• One output bus (result).
• Three control lines.

52

output
bus

input
busses

control
lines

ADD

XOR

AND

ALU (8-bit)

Arithmetic and logic unit (ALU) module

Ex. Three functions on 8-bit words
• Two input busses (arguments).
• One output bus (result).
• Three control lines.
• Left-right shifter circuits omitted

(see book for details).

53

output
bus

input
busses

control
lines

ADD

XOR

AND

Implementation
• One circuit for each function.
• Compute all values in parallel.

"Calculator" at the heart of your computer. ✓

Q. How do we select desired output?

A. "One-hot muxes" (see next slide).

A simple and useful combinational circuit: one-hot multiplexer

54

output

0

1

2

3

4

selection
inputs

0

1

2

3

4data 
inputs

select
input 3

data
input 3

is 0

output
is 0

output
is 1

data
input 3

is 1

One-hot multiplexer
• m selection lines
• m data inputs
• 1 output.
• At most one selection line is 1.
• Output has value of selected input.

all other
data inputs

ignored

this is a precondition
unlike other circuits

we consider

55

A simple and useful combinational circuit: one-hot multiplexer

Implementation
• AND corresponding selection and data inputs.
• OR all results (at most one is 1).

Applications
• Arithmetic-logic unit (previous slide).
• Main memory (next lecture).

One-hot multiplexer
• m selection lines
• m data inputs
• 1 output.
• At most one selection line is 1.
• Output has value of selected input.

select
input 3

data
input 3

is 0

output
is 0

output
is 1

data
input 3

is 1

Important to note. No direct connection from input to output.

0

1

2

3

4

3

0

1

4

2

AND gate

multiway
OR gate

a virtual selection switch

56

Summary: Useful combinational circuit modules

Next: Registers, memory, connections, and control.

ALU

 D
E
M

U
X

 D
E
C

O
D

E
R

/D
E
M

U
X

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.19.D.Circuits.Adder

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

19. Combinational
Circuits

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Section 6.1−2

