
Flow-Based Image Abstraction
Henry Kang, Member, IEEE, Seungyong Lee, Member, IEEE, and Charles K. Chui, Fellow, IEEE

Abstract—We present a nonphotorealistic rendering technique that automatically delivers a stylized abstraction of a photograph. Our

approach is based on shape/color filtering guided by a vector field that describes the flow of salient features in the image. This flow-based

filtering significantly improves the abstraction performance in terms of feature enhancement and stylization. Our method is simple, fast,

and easy to implement. Experimental results demonstrate the effectiveness of our method in producing stylistic and feature-enhancing

illustrations from photographs.

Index Terms—Nonphotorealistic rendering, image abstraction, flow-based filtering, line drawing, bilateral filter.

Ç

1 INTRODUCTION

NONPHOTOREALISTIC rendering (NPR) in general involves
abstraction and stylization of the target scene, which

helps simplify the visual cues and convey certain aspects of
the scene more effectively. For example, lines can be a
simple yet effective tool for describing shapes, as demon-
strated in many technical or artistic illustrations. Line
drawing thus has drawn a lot of attention in recent NPR
research, mainly focused on extracting lines from 3D
models [1], [2], [3], [4], [5], [6], [7], [8]. However, attempts
on making pure line drawings from photographs have been
rare, in part due to the difficulty of identifying shapes that
are implicitly embedded in a raw image, without depth
information and often corrupted by noise.

While color may not be the essential ingredient in
conveying shapes, NPR often paints object surfaces with a
restricted set of colors to further assist the process of visual
information transfer and subject identification. This is often
witnessed in the cartoon renderings of 3D objects [9], [10],
[11], where abstracted colors not only add to the stylistic
look of the rendering, but also help convey the scene
information in a clear and concise fashion. A raw photo-
graph, however, can pose bigger challenges in achieving
such cartoon-style color simplification, as it again involves
nontrivial tasks of shape recognition and noise suppression.

In this paper, we present an automatic technique that
generates a stylistic visual abstraction from a photograph.
Our method is designed to convey both shapes and colors in
an abstract but feature-preserving manner. First, it captures
important shape boundaries in the scene and displays them
with a set of smooth, coherent, and stylistic lines. Second, it
abstracts the interior colors to remove unimportant details
on the object surface while preserving and enhancing local

shapes. What separates our approach from previous
abstraction techniques is the use of a flow-based filtering
framework. We employ existing filters for line extraction and
region smoothing and adapt them to follow a highly
anisotropic kernel that describes the “flow” of salient image
features. We show that our approach improves the
abstraction performance considerably in terms of feature
enhancement and stylization, resulting in the production of
a high-quality illustration from a photograph that effec-
tively conveys important visual cues to the viewer. Such
information reduction could facilitate quick data decipher-
ing, as well as efficient data transmission over the network.

1.1 Problem Statement

Given an image that we view as a height field of pixel
intensities, the task of image abstraction involves the
following subproblems:

1. Line extraction. Capture and display “significant”
height discontinuities.

2. Region smoothing. Remove all “insignificant”
height discontinuities.

Solving the first problem results in a “line drawing” (see
Fig. 1b), while the second results in a “smoothed” or
“flattened” height field (see Fig. 1c). The combination of
these two solutions often results in a cartoonlike image (see
Fig. 1d). A line drawing is by itself an extreme case of image
abstraction, since all the pixel colors except at edges are
“flattened down” to the same level (white).

1.2 Related Work

Many of the existing image-based NPR techniques are
intended to serve artistic purposes, that is, to elicit an
aesthetic response from the viewer. These include painting
[12], [13], [14], [15], pen-and-ink illustration [16], [17], pencil
drawing [18], [19], stipple drawing [20], [21], mosaics [22],
engraving [23], and cubist rendering [24], [25].

On the other hand, another paradigm exists for image-
guided NPR, which we call image abstraction, that focuses
more on facilitating visual communication and data reduc-
tion. Our present paper falls in this category. This line of
work concerns capturing and conveying important image
features while minimizing possible distractions from un-
important details. As shape and color are two of the most

62 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

. H. Kang and C.K. Chui are with the Department of Mathematics and
Computer Science, University of Missouri, St. Louis, One University
Blvd., St. Louis, MO 63121.
E-mail: kang@cs.umsl.edu, chui@arch.umsl.edu.

. S. Lee is with the Department of Computer Science and Engineering,
Pohang University of Science and Technology (POSTECH), Pohang, 790-
784, South Korea. E-mail: leesy@postech.ac.kr.

Manuscript received 26 Oct. 2007; revised 29 Mar. 2008; accepted 29 Apr.
2008; published online 9 May 2008.
Recommended for acceptance by A. Hertzmann.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2007-10-0167.
Digital Object Identifier no. 10.1109/TVCG.2008.81.

1077-2626/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

important features to convey, the existing approaches have
focused on solving the corresponding two problems of line
drawing and region smoothing, which we described in
Section 1.1.

DeCarlo and Santella [26] employed the Canny edge
detector [27] and the mean-shift filter [28] to obtain a
cartoon-style image abstraction. They use the edge detector
to produce line drawing, while the mean-shift filter per-
forms region smoothing and segmentation. They also
provide an eye-tracking-based user interface to allow for a
user-guided specification of regional importance, which
together with the hierarchical structuring of segmented
regions, enables adaptive control of the level of abstraction.
Wang et al. [29] developed an anisotropic mean-shift filter
and applied it to create a sequence of image abstractions
from a video. Collomosse et al. [30] similarly used the mean-
shift filter to solve an offline video abstraction problem,
focusing on achieving good spatiotemporal coherence. Wen
et al. [31] presented a system that produces a rough sketch of
the scene, again based on mean-shift filtering.

One limitation of the mean-shift segmentation is that it
typically produces rough region boundaries as a result of the
density estimation in a high-dimensional space. The result-
ing region boundaries thus require additional smoothing or
postediting to obtain stylistic image abstraction [26], [31].
Region segmentation based on the mean-shift filtering is
useful for flattening regions but less ideal for producing a
sophisticated line drawing, because each segmented region
inevitably forms a closed boundary (even for an open shape).

Fischer et al. [32] presented a system for producing a
stylized augmented reality that incorporates 3D models into
a video sequence in a nonphotorealistic fashion. They
applied the Canny edge detector [27] and the bilateral filter

[33] for solving the line extraction and the region smoothing
problems, respectively. Orzan et al. [34] developed a
multiscale image abstraction system based on the Canny
edge detector and the gradient reconstruction method. Kang
et al. [35] showed that it is also possible to obtain image
abstraction via stroke-based rendering, constrained by the
lines generated from a modified Canny edge detector.

While Canny’s edge detector [27] has been often used
for line drawing, there are other line extraction methods as
well. Gooch et al. [36] presented a facial illustration system
based on a difference-of-Gaussians (DoG) filter, originated
from the Marr-Hildreth edge detector [37]. They used this
filter in conjunction with binary luminance thresholding
to produce a black-and-white facial illustration. Winne-
möller et al. [38] recently extended this technique to
abstract general color images and video, employing the
DoG filter for line drawing and the bilateral filter for
region smoothing.

This DoG edge model has proven to be more effective than
Canny’s method in terms of creating stylistic illustrations: It
captures interesting structures better (as shown in [36]), and
it automatically produces stylistic lines (in nonuniform
thickness). Also, the bilateral filter [33] is a vastly popular
and powerful tool for nonlinear image smoothing, and
because of its simplicity and effectiveness, it has been quickly
adopted as the standard solution for feature-preserving
visual data processing in a variety of 2D or 3D graphics
applications [39], [40], [41], [42], [38], [43], [44].

The advantages of the underlying filters make the
abstraction scheme of Winnemöller et al. [38] a powerful
one. From the perspective of feature enhancement and
stylization, however, we observe that there is room for
improvement. As for the DoG edge model, the aggregate of
edge pixels may not clearly reveal the sense of “directed-
ness” (and thus may look less like lines) due to the nature of
the isotropic filter kernel. Also, the thresholded edge map
may exhibit isolated edge components that clutter the
output, especially in an area with image noise or weak
contrast (see Fig. 14d). Although one may consider
adjusting the threshold in order to improve the edge
coherence, the result can be even poorer due to added
noise. This problem is significantly diminished in our flow-
based filtering framework (see Fig. 14e).

The inherent limitation of the isotropic kernel may
similarly compromise the performance of the region
smoothing technique such as the bilateral filtering. Since
the original bilateral filter uses an isotropic (circular) kernel,
some meaningful shape boundaries with low color contrast
may be overly blurred. In addition, noise along the shape
boundaries may not be properly removed. We show that
the proposed flow-based filtering framework improves the
performance of the region smoothing filter as well, in terms
of feature enhancement and stylization.

1.3 Contributions and Overview

We present a flow-driven approach to solving the two main
problems of image abstraction, that is, line drawing and
region smoothing. The preliminary version of this work
was presented in [45], where we focused on line drawing
only. In this extension, we follow the abstraction framework
of Winnemöller et al. [38], employing the DoG filter for line
extraction and the bilateral filter for region smoothing. The

KANG ET AL.: FLOW-BASED IMAGE ABSTRACTION 63

Fig. 1. Image abstraction by our method. (a) Input image. (b) Line
extraction. (c) Region flattening. (d) Combined.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

main difference is that our approach takes into account the

“direction” of the local image structure in shape/color

filtering, rather than looking in all directions. That is, we

modify these filters so that they are adapted to a curved

kernel, which follows the local “edge flow.” The resulting

two filter responses are then combined to produce the final

image abstraction (see Fig. 2 for the process overview).
We will show that this flow-based filter adaptation

enhances the abstraction and stylization performance

considerably. First, our modified line extraction filter,

which we call the flow-based DoG (FDoG) filter, dramatically

enhances the spatial coherence of lines and also suppresses

noise. Second, our modified region smoothing filter, called

the flow-based bilateral (FBL) filter, helps convey clear and

enhanced shape boundaries.
In comparison to the existing approaches for image

abstraction [26], [29], [30], [32], [31], [35], [34], [38], our

scheme has the following advantages:

. Feature enhancement. Our line extraction filter
(FDoG) differs from conventional edge detectors in
that it uses a curve-shaped filter kernel in order to
maximize the line coherence. Our region smoothing
filter (FBL) similarly improves the performance of
the standard bilateral filter in terms of enhancing
shapes and feature directionality.

. Cleanliness. Flow-driven abstraction of shapes and
colors results in smooth, clean, and clear lines and
region boundaries.

. Stylization. Improved feature enhancing capability
and cleanliness lead to the production of a high-
quality illustration.

. Simplicity. Our method is straightforward and easy
to implement. Also, both FDoG and FBL filters
provide linear time complexity with respect to the
kernel radius.

The remainder of this paper is organized as follows: In
Section 2, we describe the construction of the filter-steering

flow. Sections 3 and 4 discuss the FDoG filter and FBL filter,
respectively. We then show various test results in Section 5,
followed by the concluding remarks in Section 6.

2 FLOW CONSTRUCTION

2.1 Edge Tangent Flow (ETF)

Given an input image IðxÞ, where x ¼ ðx; yÞ denotes an
image pixel, we first construct a smooth, feature-preserving
edge flow field. This flow field will be used as the guiding
map of our filters. We define edge tangent, denoted tðxÞ, as a
vector perpendicular to the image gradient gðxÞ ¼ rIðxÞ.
The term “tangent” is used in a sense that tðxÞ may be
viewed as the tangent of the curve representing the local
edge flow. We thus call this vector field an ETF.

Such a feature-preserving vector field is useful in many
applications, and different approaches exist for constructing
one. In painterly rendering, scattered orientation interpola-
tion has been a popular method for creating a rough direction
field [12], [15] with which to guide the placement of oriented
strokes. A more sophisticated ETF may be constructed by
taking into account the entire set of pixels. In the image
processing community, it was shown that the diffusion
process based on partial differential equation (PDE) can be
used to regularize orientation fields [46], [47], such as optical
flow. Paris et al. [48] presented an adaptation of bilateral filter
for smoothing orientations in human hair images, taking
advantage of the inherent strengths of the original bilateral
filter, such as noniterative nature, simplicity, and controll-
ability. These advantages led us to similarly employ a
bilateral filter for constructing ETF. Our formulation is
designed to deal with general input images, and we look to
provide an efficient scheme suited for handling both still
images and video.

2.2 Formulation

Our ETF construction scheme is essentially a bilateral filter
[33] adapted to handle vector-valued data. In each pixel-
centered kernel, we perform nonlinear smoothing of

64 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Fig. 2. Process overview.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

vectors such that salient edge directions are preserved,
while weak edges are redirected to follow the neighboring
dominant ones. Also, to preserve sharp corners, we
encourage smoothing among the edges with similar
orientations.

The ETF construction filter is thus defined as follows:

t0ðxÞ ¼ 1

k

ZZ
��

�ðx;yÞtðyÞwsðx;yÞwmðx;yÞwdðx;yÞdy; ð1Þ

where ��ðxÞ denotes the kernel of radius � at x, and k is the

vector normalizing term. The tangent vector tð�Þ is assumed

to be 2�-periodic.
For the spatial weight function ws, we use a box filter of

radius �:

wsðx;yÞ ¼
1 if kx� yk < �;
0 otherwise:

�
ð2Þ

The other two weight functions, wm and wd, play the key

role in feature preservation. We call wm the magnitude weight

function, which is defined as

wmðx;yÞ ¼ ĝðyÞ � ĝðxÞ þ 1½ �=2; ð3Þ

where ĝðzÞ denotes the normalized gradient magnitude at

z. Note that wm ranges in [0, 1], and this weight function

monotonically increases with respect to the magnitude

difference ĝðyÞ � ĝðxÞ, indicating that bigger weights

are given to the neighboring pixels y whose gradient

magnitudes are higher than that of the center x. This

ensures the preservation of the dominant edge directions.
We then define wd, the direction weight function, to

promote smoothing among similar orientations:

wdðx;yÞ ¼ tðxÞ � tðyÞj j; ð4Þ

where tðzÞ denotes the normalized tangent vector at z. This

weight function increases as the two vectors align closely

(that is, the angle � between vectors approaches 0 or �) and

decreases as they get orthogonal (that is, � approaches �=2).

For tight alignment of vectors, we temporarily reverse the

direction of tðyÞ using the sign function �ðx;yÞ 2 f1;�1g, in

case � is bigger than �=2:

�ðx;yÞ ¼ 1 if tðxÞ � tðyÞ > 0;
�1 otherwise:

�
ð5Þ

To further improve the robustness of orientation filter-

ing, we may add another component to (1) such as the

variance term suggested by Paris et al. [48], via collecting

statistical measurements.
The initial ETF, denoted as t0ðxÞ, is obtained by taking

perpendicular vectors (in the counterclockwise sense) from

the initial gradient map g0ðxÞ of the input image I. t0ðxÞ is

then normalized before use. The initial gradient map g0ðxÞ
is computed by employing a Sobel operator. The input

image may be optionally Gaussian-blurred before gradient

computation. Fig. 3 shows ETF fields obtained from

sample images. The ETF preserves edge directions well

around important features while keeping them smooth

elsewhere. The ETF fields are visualized using line integral

convolution [49].

2.3 Iterative Application

Our filter may be iteratively applied to update the ETF

incrementally: tiðxÞ ! tiþ1ðxÞ. In this case, gðxÞ evolves

accordingly (but the gradient magnitude ĝðxÞ is un-

changed). In practice, we typically iterate a few (2 � 3)

times. Fig. 4 shows how the ETF gets smoother after each

iteration.

2.4 Acceleration

Note that the original formulation of the ETF construction

filter (1) is an Oðn� �2Þ algorithm, where n is the number of

image pixels and � is the kernel radius. In practice, we

accelerate the ETF construction by separately applying 1D

versions of ETF filters in x and y dimensions. This idea is

similar to the separable bilateral filtering, suggested by

Pham and van Vliet [50].
The separable ETF construction reduces the time com-

plexity down to Oðn� �Þ, without noticeable quality

degradation of the vector field (see Fig. 5). In this figure,

we represent orientations by RGB colors (with each

component ranging in [0, 1]) to enable a clear comparison.

For the input image in Fig. 5a, the average per-pixel color

distance between the full-kernel ETF and the separable-

kernel ETF is 0.00893.1

KANG ET AL.: FLOW-BASED IMAGE ABSTRACTION 65

1. The separable ETF construction is more limited than the full-kernel
version in capturing small-scale details or texture. In this case, a sufficiently
small kernel must be used.

Fig. 3. ETF construction. (a) Tropical fish. (b) ETF (Tropical fish).

(c) Parrot. (d) ETF (parrot). (e) Einstein. (f) ETF (Einstein).

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

3 LINE EXTRACTION

For image-guided 2D line drawing, conventional edge (or
line) detectors are often employed and adapted, such as
Canny’s [26], [32], [35], [34], mean-shift segmentation [29],
[30], [31], DoG filtering [36], [38], and so on. We build on the
DoG edge model suggested by Winnemöller et al. [38],
mainly due to its simplicity and the stylistic nature that suits
our purpose. We particularly focus on enhancing the quality
of lines by steering the DoG filter along the ETF flow.

tðxÞ in ETF represents the local edge direction, meaning
we will most likely have the highest contrast in its
perpendicular direction, that is, the gradient direction
gðxÞ. The idea is to apply a linear DoG filter in this gradient
direction as we move along the edge flow. We then
accumulate the individual filter responses along the flow,
as a way of collecting enough evidence before we draw the
conclusion on the “edge-ness.” This allows us to exaggerate
the filter output along genuine edges, while we attenuate
the output from spurious edges. Therefore, it not only
enhances the spatial coherence of the edges but also has the
effect of suppressing noise.

3.1 Flow-Based Difference-of-Gaussians Filter

Fig. 6 illustrates our filtering scheme. Let cxðsÞ denote the
flow curve at x, where s is an arc-length parameter that may

take on positive or negative values. We assume x serves as

the curve center, that is, cxð0Þ ¼ x. Also, let lx;s denote a line

segment that is perpendicular to tðcxðsÞÞ and intersecting

cxðsÞ. We parameterize lx;s with an arc-length parameter t,

and hence, lx;sðtÞ denotes the point on the line lx;s at t.

Again, we assume lx;s is centered at cxðsÞ, that is,

lx;sð0Þ ¼ cxðsÞ. Note that lx;s is parallel to the gradient

vector gðcxðsÞÞ. We use the term flow axis for cx and gradient

axis for lx;s.
Our filtering scheme is then formulated as

HðxÞ ¼
Z S

�S

Z T

�T
I lx;sðtÞ
� �

fðtÞG�mðsÞdtds; ð6Þ

where Iðlx;sðtÞÞ represents the value of the input image I at

lx;sðtÞ. The above formulation can be interpreted as follows:

As we move along cx, we apply a one-dimensional (1D)

filter f on the gradient line lx;s. The individual filter

responses are then accumulated along cx using a weight

function of s, denoted as G�mðsÞ, where G� represents a

univariate Gaussian function of variance �2:

G�ðxÞ ¼
1ffiffiffiffiffiffi
2�
p

�
e�

x2

2�2 : ð7Þ

In (6), the user-provided parameter �m automatically

determines the size of S. Thus, �m controls the length of

the elongated flow kernel and also the degree of line
coherence to enforce.

As for the underlying filter f , we employ the edge model

based on DoG [38]:

fðtÞ ¼ G�cðtÞ � � �G�sðtÞ; ð8Þ

where the two parameters, �c and �s, control the sizes of the

center interval and the surrounding interval, respectively.
We set �s ¼ 1:6�c to make the shape of f closely resemble

that of Laplacian-of-Gaussian [37]. Therefore, once �c is

66 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Fig. 5. Separable ETF construction. (a) Input. (b) Full kernel.
(c) Separable kernel.

Fig. 6. FDoG filtering. (a) Input. (b) ETF. (c) Kernel at x. (d) Kernel

enlarged. (e) Gaussian components for DoG.

Fig. 4. Iterative ETF construction. (a) Input. (b) First iteration. (c) Second
iteration. (d) Third iteration.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

given by the user, it automatically determines �s and, thus,

the size of T in (6). It also directly affects the resulting line

width. � controls the level of noise detected and typically

ranges in [0.97, 1.0].
Once we obtain H from (6), we convert it to a black-and-

white image by binary thresholding, as suggested in [38]:

~HðxÞ ¼ 0 if HðxÞ < 0 and 1þ tanh HðxÞð Þ < �;
1 otherwise;

�
ð9Þ

where � is a threshold in [0, 1], with the typical value of 0.5.

This binary output ~H serves as our targeted line illustration.
Since our DoG filter is driven by the vector flow, we

name it as the FDoG filter.
Fig. 7 shows results of our FDoG filtering with varying

sets of parameter values. Each caption specifies the modified

parameter value from the original setting: �m ¼ 3:0, �c ¼ 1:0,

and � ¼ 0:99. With FDoG filtering, the line coherence is

improved compared to that of the isotropic DoG filter in

Fig. 7b. Also, see how the kernel size parameters �m and �c
affect the line coherence and the line width, respectively.

Increasing � results in the inclusion of more lines in the

illustration.
Fig. 8 focuses on the capability of the FDoG filter in

enhancing the spatial coherence of lines. Unlike conven-

tional edge detectors, the FDoG filter enables constructing

lines from a set of disconnected points by obtaining ETF

from a Gaussian-smoothed input image and with a large

ETF kernel size (� in (1)). Compared to Fig. 8b (DoG), the

result in Fig. 8c (FDoG) can be said of as “perceptually

correct,” considering the fact that people generally perceive

Fig. 8a as a picture of a circle rather than a collection of dots.

The middle and the last rows illustrate that FDoG is capable

of handling junctions and intersections as well.
Fig. 9 demonstrates the robustness of FDoG against

noise. Fig. 9a is an image corrupted by Gaussian noise, and

Fig. 9b is an output of the isotropic DoG filter followed by

binarization with a low threshold ð� ¼ 0:2Þ. Notice the weak

line coherence due to noise. While a higher threshold ð� ¼
0:7Þ as in Fig. 9c improves the coherence, the added noise

clutters the output. On the other hand, Fig. 9e shows that

FDoG filter constructs a clean and coherent line at a low

threshold ð� ¼ 0:2Þ by taking advantage of the smooth ETF

vectors around the target shape (Fig. 9d).

KANG ET AL.: FLOW-BASED IMAGE ABSTRACTION 67

Fig. 7. FDoG filtering with parameter control. (a) Input. (b) Isotropic DoG.

(c) FDoG: �m ¼ 3:0. (d) FDoG: �m ¼ 1:0. (e) FDoG: �c ¼ 2:0. (f) FDoG:

� ¼ 0:997.

Fig. 8. FDoG: Extracting lines from isolated points. (a) Input. (b) DoG.

(c) FDoG. (d) Input. (e) DoG. (f) FDoG. (g) Input. (h) DoG. (i) FDoG.

Fig. 9. FDoG: Noise suppression. (a) Input. (b) DoG. (c) DoG. (d) ETF.

(e) FDoG.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

While the FDoG filter is useful when it comes to
protecting directional structures, it shows some limitations
in handling small-scale nondirectional structures. Fig. 10
illustrates this case. Since the FDoG filter relies on ETF, it
is important to construct an ETF that properly captures the
shape, which, however, may be difficult for tiny-scale
details or texture patterns. In such cases, one must set the
ETF kernel size (represented by � in (1)) to be sufficiently
small, otherwise, the line detection may fail, as shown in
Fig. 10c.

3.2 Iterative FDoG Filtering

For further enhancement of the line drawing, the FDoG

filter may be applied iteratively. After each application of

FDoG, we may reinitialize the filter input by superimposing

the black edge pixels of the previous binary output ~H

(obtained by (9)) upon the original image I, then reapply

the FDoG filter to this combined image (ETF remains

unchanged). This process may be repeated until we reach a

satisfactory level of line connectivity and illustration

quality. For most of our test images, a few (2 � 3) iterations

were sufficient. Before each application of the FDoG filter,

one may optionally Gaussian-blur the filter input to further

smooth the line strokes.

Black lines copied from the previous iteration form stark

contrast with the background2 and, thus, are recaptured in

the current iteration due to the contrast-sensitive nature of

the underlying DoG filter. In addition, FDoG filtering

extends the detected lines along the ETF flow. Therefore,

iterative FDoG filtering progressively improves line coher-

ence. Figs. 11, 12, and 13 show that repeated applications of

the FDOG filter successively improve the spatial coherence

of the shape boundaries.

68 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Fig. 10. FDoG: Handling of small-scale texture. (a) Input. (b) � ¼ 3.
(c) � ¼ 5.

Fig. 11. Iterative FDoG: Skull. (a) Input image. (b) Isotropic DOG.
(c) FDoG: First iteration. (d) FDoG: Third iteration.

Fig. 12. Iterative FDoG: Venus. (a) Input image. (b) Isotropic DOG.
(c) FDoG: First iteration. (d) FDoG: Third iteration.

Fig. 13. Iterative FDoG: Tropical fish. (a) Input image. (b) Isotropic DOG.
(c) FDoG: First iteration. (d) FDoG: Third iteration.

2. A possible exception is when both sides of the line are almost black, in
which case, however, it is not likely that the line was detected by the linear
DoG in the first place.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

In comparing DoG and FDoG, there are two important
things to note: First, while the FDoG filter outperforms the
DoG filter in terms of the line coherence and the cleanliness
of illustration, DoG appears to do a better job of conveying
“tone” information. For example, in Fig. 11b (DoG filtered),
the black pixel aggregates naturally represent the tone in
the area, whereas in Fig. 11d (FDoG filtered), the line
thickness is somewhat equalized, and it becomes more so
after each iteration of FDoG. Second, while the first
application of the FDoG filter does suppress noise better
than the DoG filter, the subsequent application of the FDoG
filter may inherit noise pixels captured from the previous
iteration and stabilize them due to our line superimposition
principle. For example, see the neck of Venus (in Fig. 12c)
that is filled with a set of short line segments. It is unclear
whether these line segments are noise or not, but they are
enhanced and stabilized in Fig. 12d. Careful parameter
setting may help reduce noise in the first application of
FDoG but at the risk of losing some details. One may also
develop a more sophisticated strategy for FDoG iteration to
reduce such artifacts.

3.3 Implementation of the FDOG Filter

For implementing the FDoG filter, we sample 2	� 2

points from the kernel and discretely approximate (6). We
first sample 2	 points along the flow axis cx by bidir-
ectionally following the vector flow starting from x (thus,
	 sample points in each direction). Let z denote the sample
points along cx. Initially, we set z x, then iteratively
obtain the next sample point by moving along cx in one
direction using a fixed step size �m : z zþ �m � tðzÞ.
Similarly, we obtain the sample points on the other half of
cx: z z� �m � tðzÞ.

Now, at each z, we sample 2
 points along the gradient
axis (the line perpendicular to tðzÞ), similarly with the step
size of �n. We set �m ¼ �n ¼ 1 throughout. 	 and
 are
automatically determined by �m and �c, respectively. The
time complexity of the FDoG filter is thus Oðn� 	�
Þ,
where n is the number of image pixels.

We can accelerate the FDoG filtering by decomposing (6)
as follows:

HgðxÞ ¼
Z T

�T
I lxðtÞð ÞfðtÞdt; ð10Þ

and

HeðxÞ ¼
Z S

�S
G�mðsÞHg cxðsÞð Þds; ð11Þ

where lxðtÞ is an abbreviated notation for lx;0ðtÞ. That is,
lxðtÞ denotes the gradient axis at x. We first execute (10) and
compute HgðxÞ, which is the linear DoG value in the
gradient direction at each x in the image. This takes Oðn�

Þ time, with 2
 samples in the gradient direction. Given
HgðxÞ, we then compute HeðxÞ along the flow axis cx, as in
(11). Computing HeðxÞ has the effect of collecting the linear
DoG values along the flow curve. This takes Oðn� 	Þ, with
2	 samples along the flow axis. Overall, this separation
strategy reduces the original complexity of Oðn� 	�
Þ
down to Oðn� 	þ n�
Þ. There is no quality degradation
ensued from this conversion.

Fig. 14 shows the comparison of our method with other
popular line extraction techniques, including Canny’s,
mean-shift segmentation, and isotropic DoG. From the
line-drawing perspective, our method outperforms others
in that it not only captures “perceptually meaningful”
structures but also depicts them with smooth, coherent, and
stylistic lines.

4 REGION SMOOTHING

The goal of region smoothing is to remove unimportant
details from the region interiors while preserving important
shapes (that is, region boundaries). This in general calls for
feature-preserving image smoothing, for which the bilateral
filter is one of the most popular solutions out there. Due to
its effectiveness and ease of use, the bilateral filter has
drawn a lot of attention in recent years, and it is now being
used for solving a variety of problems in computer graphics,
including surface fairing [41], tone mapping [40], texture
editing and relighting [39], image fusion [42], data upsam-
pling [44], feature-aware filtering [43], and image/video
abstraction [38]. The key to the bilateral filtering is to
employ two weight functions, one in the spatial domain and
the other in the color domain, then perform smoothing
amongst similar colors only. This turns out a simple yet
effective way of edge-preserving image smoothing.

From the perspective of image abstraction and styliza-
tion, the original bilateral filter does have some limitations,
mainly due to the use of a circular (isotropic) spatial kernel.
In smoothing the minor color differences in a circular
neighborhood, it ignores the direction in which the color
contrast is formed and thus may remove some subtle but
meaningful shape boundaries. That is, it may lose feature
directionality rather than protect it. This lack of direction-
awareness may also cause the surviving edges to look
rough, resulting in a poor stylization.

KANG ET AL.: FLOW-BASED IMAGE ABSTRACTION 69

Fig. 14. FDoG: Comparison with other techniques. (a) Input. (b) Canny. (c) Mean shift. (d) Isotropic DoG. (e) FDoG.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

In this section, we show that the ETF-based adaptation of
bilateral filter successfully overcomes these limitations. We
conduct two separate linear bilateral smoothing operations,
one along the edge directions and the other along the
perpendicular (gradient) directions. Such reformulation of
bilateral filter has direct connections to some of the existing
structure-adaptive image denoising techniques, as will be
discussed in Section 4.2.

4.1 Flow-Based Bilateral Filter

Equations (12) and (14) describe together the formulation of
our FBL filtering scheme. It is also graphically illustrated in
Fig. 15. The linear bilateral filter along the edge (or ETF)
direction is defined as follows:

CeðxÞ ¼
1

�e

Z S

�S
I cxðsÞð ÞG�eðsÞh x; cxðsÞ; reð Þds; ð12Þ

where cx again denotes the flow curve of ETF, and �e ¼R S
�S G�eðsÞhðx; cxðsÞ; reÞds is the weight normalization term.

As in the original bilateral filter, we provide two weight
functions for the spatial and color domains, denoted as
G�eðsÞ and hðx; cxðsÞ; reÞ, respectively. The spatial weight
function G�e is a Gaussian function along the flow axis cx. �e
determines the kernel size S. The similarity weight function h
is defined similarly to the original bilateral filter, except that
we compare the colors between the center point x and the
points along the main axis cx:

hðx;y; �Þ ¼ G� IðxÞ � IðyÞk kð Þ: ð13Þ

This formulation can also be applied to color images by
employing a distance metric in the color space.

Similarly, the following equation defines the other linear
bilateral filter along the gradient direction:

CgðxÞ ¼
1

�g

Z T

�T
I lxðtÞð ÞG�gðtÞh x; lxðtÞ; rg

� �
dt; ð14Þ

where lxðtÞ is again an abbreviated notation for lx;0ðtÞ, which

is the gradient axis at x. Also, �g ¼
R T
�T G�gðtÞhðx; lxðtÞ; rgÞdt

represents the weight normalization term.
Figs. 15c and 15d exemplify how the two axes, cx and lx,

are formed for the corresponding linear bilateral filters
CeðxÞ and CgðxÞ, respectively. In particular, Fig. 15e shows a
possible shape of the bilateral weight function for Cg at x. As
in the case of the FDoG filter, the discrete implementation of
Ce and Cg is achieved by sampling 2	 points along cx and
2
 points along lx, respectively.
Ce and Cg play different roles. Ce mainly operates in the

edge directions and thus protects and cleans up the shape
boundaries. On the other hand, Cg suppresses the color
differences within regions and thus smooths out the region
interiors. Typically, we alternate Ce and Cg in an iterative
fashion. We call the combination of Ce and Cg an FBL filter.
Since Ce and Cg are both 1D operators, they are much faster
than the full-kernel bilateral filter.

Fig. 16 shows the comparison between the original
bilateral filter and our FBL filter. From a noisy input
(Fig. 16a), Fig. 16b is obtained by iterating the bilateral filter
five times, with domain and range parameters �d ¼ 2:0,
�r ¼ 10 (see [33] for definitions). On the other hand,
Fig. 16c is obtained by alternating Ce and Cg five times,
with parameter values of �e ¼ 2:0, re ¼ 50, �g ¼ 2:0, and
rg ¼ 10. In this example, we set re > rg so that we can allow
more aggressive smoothing in the edge directions than in
the gradient directions. As compared in Figs. 16d and 16e,
the FBL filter restores the shape boundary better than the
full-kernel bilateral filter.

Fig. 17 further illustrates the performance of the FBL
filter in terms of shape restoration. We picked a low-quality
input image (Fig. 17a) that features some blockiness,
possibly due to its compression scheme. While both the
full-kernel bilateral filter and the FBL filter blur the image
without destroying the original edges, the full-kernel
bilateral filtering does not remove the blocking artifact
(see Figs. 17e and 17g). On the other hand, the FBL filter
restores clean and smooth shape boundaries (see Figs. 17f
and 17h).

Fig. 18 shows how the FBL filter preserves subtle (but
meaningful) shape boundaries. Unlike the full-kernel

70 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Fig. 15. FBL filtering. (a) Input. (b) ETF. (c) Two linear kernels at x.

(d) Kernels enlarged. (e) Bilateral weight function for Cg.

Fig. 16. FBL: Boundary restoration. (a) Input. (b) Bilateral filter. (c) FBL

filter. (d) Bilateral filter (enlarged). (e) FBL filter (enlarged).

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

bilateral filter (see Fig. 18c), the FBL filter reinforces the

shapes of the individual cat hairs by directing the

smoothing along ETF (see Fig. 18d). The shape-enhancing

nature of the FBL filter also makes a difference in

stylization. We stylize the filtered image by region flattening,

for which we perform a uniform-sized-bin luminance

quantization [38]. Typical values for quantization levels

are 4 � 10. As shown in Fig. 18f, the FBL-filtered (and

stylized) image “indicates” the sharp pattern of cat hairs

better than the stylization through the full-kernel bilateral

filter (Fig. 18e).
Due to its directional nature, the FBL filter is somewhat

limited in stylizing small-scale nondirectional (isotropic)

textures. See Fig. 19 for an example, where we similarly

applied luminance quantization on each bilateral-filtered

output. In this example, the full-kernel bilateral filter

(Fig. 19b) results in shapes that are closest to the original.

On the other hand, FBL filter (Fig. 19d) is capable of making

the shape boundaries smoother, on account of the use of a

smooth ETF. Also, FBL filter does not produce axis-aligned

artifacts that may be present in the result of xy-separable

bilateral filter [50] (see Fig. 19c).
Fig. 21 compares the stylization results through mean-

shift segmentation, full-kernel bilateral filter, and FBL

KANG ET AL.: FLOW-BASED IMAGE ABSTRACTION 71

Fig. 17. FBL: Shape enhancement. (a) Input image. (b) ETF. (c) Bilateral

filter (�d ¼ 2:0, �r ¼ 10, three iterations). (d) FBL (�e ¼ 2:0, re ¼ 50,

�g ¼ 0:3, rg ¼ 10, three iterations). (e) Bilateral filter (enlarged). (f) FBL

(enlarged). (g) Bilateral filter (enlarged). (h) FBL (enlarged).

Fig. 18. FBL: Feature-enhancing stylization. (a) Input Image. (b) ETF.

(c) Bilateral filter (�d ¼ 2:0, �r ¼ 10, three iterations). (d) FBL (�e ¼ 2:0,

re ¼ 10, �g ¼ 0:3, rg ¼ 10, five iterations). (e) Bilateral filter (flattened).

(f) FBL (flattened).

Fig. 19. FBL: Texture stylization. (a) Input image. (b) Bilateral
(�d ¼ 2:0, �r ¼ 10, three iterations, four-level quantization). (c) Separ-
able bilateral (�d ¼ 2:0, �r ¼ 10, three iterations, four-level quantiza-
tion). (d) FBL (�e ¼ 2:0, re ¼ 10, �g ¼ 2:0, rg ¼ 10, three iterations,
four-level quantization).

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

filter. Figs. 21b and 21f are obtained by the mean-shift
segmentation with parameter values of hs ¼ 10, hr ¼ 5,
and M ¼ 20 (see [28] for definitions). Note that the
segmented region boundaries tend to be rough (due to
the density estimation in a 5D space), and the loss of
feature directionality is significant. Figs. 21c and 21g are
obtained from the full-kernel bilateral filtering (�d ¼ 2:0,
�r ¼ 10, three iterations), followed by luminance quantiza-
tion. Compared with the mean-shift approach, the full-
kernel bilateral filter does a better job at producing smooth
region boundaries but still loses some directional features.

Finally, the results of FBL filtering (�e ¼ 2:0, re ¼ 50,
�g ¼ 0:3, and rg ¼ 10, five iterations) plus luminance
quantization shown in Figs. 21d and 21h, confirm that
the FBL filter provides smooth region boundaries, as well
as enhanced feature directionality.

4.2 Connections to Other Techniques

Pham and van Vliet [50] first introduced the idea of
separating the bilateral filter into two directions (x-axis and
y-axis), mainly for efficiency concerns. Pham [51] later
presented another separable bilateral filter, named the
structure-adaptive bilateral filter, where the separation axes
are oriented along the feature directions recorded in the
Gaussian-smoothed gradient structure tensor field. Our
FBL filter is therefore a direct descendent of Pham’s
structure-adaptive bilateral filter [51] but with the following
differences: 1) For steering the filter, we use ETF instead of
Gaussian-smoothed gradient structure tensor. Note that an
ETF is constructed by bilateral filtering, which preserves
features better than Gaussian smoothing. 2) While the
structure-adaptive bilateral filter employs a rigid arc-
shaped kernel, we allow for a more flexible free-form
kernel that faithfully follows an arbitrary shape of the edge
flow. For example, the FBL filter captures an arbitrarily
curved structure in Fig. 15c better than the structure-
adaptive bilateral filter that uses a parabolic arc.

As for the kernel shape, our flow-based filtering
scheme provides the highest flexibility as compared to
the conventional isotropic/full kernel (circle), xy-separable
kernel (line), anisotropic kernel (ellipse or line), and
structure-adaptive kernel (arc). This could lead to better
shape protection and enhancement, as demonstrated in
Fig. 20.

72 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Fig. 20. FBL: Effect of kernel shapes. (a) Input. (b) Full-kernel bilateral

(circle). (c) xy-separable bilateral (axis-aligned line). (d) Anisotropic

bilateral (oriented line). (e) Structure-adaptive bilateral (oriented arc).

(f) FBL (free-form curve).

Fig. 21. FBL: Comparison of stylization results. (a) Input Image. (b) Mean-shift segmentation. (c) Bilateral filter þ Quantization. (d) FBL þ
Quantization. (e) Input Image. (f) Mean-shift segmentation. (g) Bilateral filter þ Quantization. (h) FBL þ Quantization.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

It should also be noted that such oriented bilateral filters
(Figs. 20d, 20e, and 20f) are closely related to the PDE-based
directional diffusion schemes [52], [53], [54], as pointed out
by Pham [51]. Both the structure-adaptive bilateral filter
and our FBL filter inherit the advantages of the original
bilateral filter over the PDE-based approach, such as
noniterativeness, simplicity, controllability, and so on.

5 RESULTS

Fig. 24 shows various image abstraction results obtained
from the test images in Fig. 22. Figs. 24a, 24c, 24e, 24f, and
24h are produced by combining results from FDoG and
FBL filtering. The depiction of feature lines helps convey
the shapes effectively, and the flattened colors convey the
tonal information in a stylistic yet efficient (less-distract-
ing) manner. Figs. 24d and 24i show that pure line
drawing may sometimes work better in conveying the
target shapes. On the other hand, pure color abstraction
without lines (see Figs. 24b and 24g) can also be a good
alternative for creating stylistic illustrations. Fig. 25 shows
an abstraction result obtained from a large photograph. As
shown in these results, our filters perform consistently well
on a variety of images featuring humans, animals, plants,
buildings, still objects, and outdoor scenes.

We have tested our filters on a 3-GHz dual-core PC
with 2 Gbytes of memory. The performance mainly
depends on the image size and the filter kernel size.
Given an image of n pixels, our accelerated ETF construc-
tion filter (see (1) and Section 2.4) is an Oðn� �Þ algorithm,
where � is the kernel radius. The FDoG filter ((10) and
(11)) and the FBL filter ((12) and (14)) both have the
complexity of Oðn� 	þ n�
Þ, where 2	 and 2
 are the
number of sample points along the flow axis and the
gradient axis, respectively. For a 512 � 512 color image
and with the default parameter values � ¼ 5, �m ¼ 3:0,
�c ¼ 1:0, �e ¼ 2:0, re ¼ 10, �g ¼ 0:5, and rg ¼ 10, an
application of the ETF construction filter, the FDoG
filter, and the FBL filter typically takes less than one
second each.

Fig. 23 shows the timing data for the three filters
obtained on a 512 � 512 RGB color image with varying
kernel radius values. For the ETF filter, the term “kernel
radius” refers to �, and for the FDoG and FBL filters, it
refers to both 	 and
, where we set 	 ¼
 for this
experiment. All three of these filters have a linear time
complexity with respect to the kernel radius. In case of the
FBL filter, its speed is comparable to that of the separable
bilateral filter [50], especially when 	 ¼
.

It should be noted that, for bilateral filtering, there exist
some sophisticated acceleration strategies based on histo-
gram manipulation [55], image downsampling [40], [56],
and grid processing [43]. We expect that our filters may be
further accelerated when combined with such strategies,
especially for large kernels. Also, the local nature of our
filters should allow for a GPU-based parallel implementa-
tion, which would provide dramatic speedup and facilitate
the processing of a large number of images.

6 CONCLUSIONS

We have presented an automatic technique for image

abstraction based on a flow-based filtering framework. In

particular, we have described the FDoG and FBL filters as

new solutions to the two representative problems of image

abstraction, line drawing, and region smoothing. Guided

by the feature-preserving flow called ETF, these filters

outperform their original counterparts in terms of feature

enhancement and stylization, resulting in the production of

high-quality image abstraction, as well as effective com-

munication of shapes and colors.
Line drawing is generally considered the cornerstone of

NPR. Since the FDoG filter constructs lines of style and

quality, it may be used to enhance other image-based NPR

effects such as pen-and-ink illustration, stippling, engrav-

ing, mosaics, pencil drawing, painting, and image puzzles.

Its capability of coherence enhancement and noise suppres-

sion suggests its usefulness beyond NPR and thus deserves

further investigation. As discussed in Section 4, the bilateral

filter is employed in a variety of graphics applications,

some of which may benefit from the feature-enhancing

nature of the FBL filter. Our ETF-driven image filtering

framework is general and independent of the underlying

filter, and thus, it is possible to similarly apply other filters

or algorithms to obtain feature-enhanced results or provide

local guidance in a host of image-related tasks such as

KANG ET AL.: FLOW-BASED IMAGE ABSTRACTION 73

Fig. 22. Test images.

Fig. 23. Execution time for the filters.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

stroke-based rendering, texture synthesis, and image
magnification to name a few.

Since our filters follow the precomputed vector direc-
tions, the quality of the underlying vector field (ETF in our
case) is crucial in the success of filtering. That is, if ETF is
somewhat inaccurate or does not properly represent the
local features to preserve, the output of the FDoG and FBL
filters could also suffer. This particularly limits the ability of
our filters in capturing tiny-scale details and textures, which
calls for the use of a proportionally small ETF kernel. One
possible solution could be the use of an adaptive kernel
based on the analysis of scene complexity. Another
interesting future research involves the development of
3D tangent vector fields for surfaces [57], possibly through
ETF construction on a 2D parameter space or its extension
to a grid of 3D voxels. As for the abstraction scheme as a
whole, a logical next step might be to incorporate more
intelligence or prior knowledge to provide a significantly
artistic or hand-made look in the final illustration.

Although video is not the primary target of this work,
we also tested our scheme on some videos (some of which
can be found on the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TVCG.

2008.81) using a frame-by-frame application of our filters.

While preliminary, the test result on video was promising

in that a similar feature-enhancing effect was obtained

without significant temporal artifacts. This suggests that the

flow-based filtering principle may be useful in handling a

variety of video-related tasks as well, particularly the ones

that involve feature detection and enhancement.

ACKNOWLEDGMENTS

This research was supported in part by ARO Grant W911NF-

07-1-0525 and DARPA/NGA Grant HM-1582-05-2-2003. It

was also supported by the IT R&D program of MKE/IITA

(2008-F-031-01, Development of Computational Photography

Technologies for Image and Video Contents). Photos courtesy

of the US fish and wildlife digital library (www.fws.gov/dls),

the Kodak true color image suite (r0k.us/graphics/kodak),

the USC-SIPI image database (sipi.usc.edu/database), the

MedPix image database (rad. usuhs.mil/medpix), and Flickr

(www.flickr.com).

74 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Fig. 24. Results. (a) Tiger. (b) Venice. (c) Elvis. (d) Bicycle. (e) Shell. (f) Terrace. (g) Rhino. (h) Basket. (i) Cathedral.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive Contours for Conveying Shape,” Proc. ACM SIG-
GRAPH ’03, pp. 848-855, 2003.

[2] R.D. Kalnins, P.L. Davidson, L. Markosian, and A. Finkelstein,
“Coherent Stylized Silhouettes,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 856-861, July 2003.

[3] M. Sousa and P. Prusinkiewicz, “A Few Good Lines: Suggestive
Drawing of 3D Models,” Computer Graphics Forum, vol. 22, no. 3,
2003.

[4] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T.
Strothotte, “A Developer’s Guide to Silhouette Algorithms for
Polygonal Models,” IEEE Computer Graphics and Applications,
vol. 23, no. 4, pp. 28-37, July/Aug. 2003.

[5] Y. Lee, L. Markosian, S. Lee, and J.F. Hughes, “Line Drawings via
Abstracted Shading,” Proc. ACM SIGGRAPH, 2007.

[6] T. Judd, F. Durand, and E. Adelson, “Apparent Ridges for Line
Drawing,” Proc. ACM SIGGRAPH, 2007.

[7] T. Goddwin, I. Vollick, and A. Hertzmann, “Isophote Distance: A
Shading Approach to Artistic Stroke Thickness,” Proc. Non-
Photorealistic Animation and Rendering (NPAR ’07), pp. 53-62, 2007.

[8] D. DeCarlo and S. Rusinkiewicz, “Highlight Lines for Conveying
Shape,” Proc. Non-Photorealistic Animation and Rendering (NPAR
’07), pp. 63-70, 2007.

[9] A. Lake, C. Marshall, M. Harris, and M. Blackstein, “Stylized
Rendering Techniques for Scalable Real-Time 3D Animation,”
Proc. Non-Photorealistic Animation and Rendering (NPAR ’07),
pp. 13-20, 2000.

[10] K. Anjyo and K. Hiramitsu, “Stylized Highlights for Cartoon
Rendering and Animation,” IEEE Computer Graphics and Applica-
tions, vol. 23, no. 4, pp. 54-61, July/Aug. 2003.

[11] P. Barla, J. Thollot, and L. Markosian, “X-Toon: An Extended Toon
Shader,” Proc. Non-Photorealistic Animation and Rendering (NPAR
’07), pp. 127-132, 2006.

[12] P. Litwinowicz, “Processing Images and Video for an Impres-
sionist Effect,” Proc. ACM SIGGRAPH ’97, pp. 407-414, 1997.

[13] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes
of Multiple Sizes,” Proc. ACM SIGGRAPH ’98, pp. 453-460, 1998.

[14] B. Gooch, G. Coombe, and P. Shirley, “Artistic Vision: Painterly
Rendering Using Computer Vision Techniques,” Proc. Non-
Photorealistic Animation and Rendering (NPAR ’07), pp. 83-90, 2002.

[15] J. Hays and I. Essa, “Image and Video-Based Painterly Anima-
tion,” Proc. Non-Photorealistic Animation and Rendering (NPAR ’07),
pp. 113-120, 2004.

[16] M.P. Salisbury, S.E. Anderson, R. Barzel, and D.H. Salesin,
“Interactive Pen-and-Ink Illustration,” Proc. ACM SIGGRAPH
’94, pp. 101-108, 1994.

[17] M. Salisbury, M. Wong, J. Hughes, and D. Salesin, “Orientable
Textures for Image-Based Pen-and-Ink Illustration,” Proc. ACM
SIGGRAPH ’97, pp. 401-406, 1997.

[18] M. Sousa and J. Buchanan, “Observational Models for Graphite
Pencil Materials,” Computer Graphics Forum, vol. 19, no. 1, pp. 27-
49, 2000.

[19] F. Durand, V. Ostromoukhov, M. Miller, F. Duranleau, and J.
Dorsey, “Decoupling Strokes and High-Level Attributes for
Interactive Traditional Drawing,” Proc. Eurographics Workshop
Rendering (EGRW ’01), pp. 71-82, 2001.

[20] O. Deussen, S. Hiller, K. Van Overveld, and T. Strothotte,
“Floating Points: A Method for Computing Stipple Drawings,”
Computer Graphics Forum, vol. 19, no. 3, pp. 40-51, 2000.

[21] A. Secord, “Weighted Voronoi Stippling,” Proc. Non-Photorealistic
Animation and Rendering (NPAR ’02), pp. 37-43, 2002.

[22] A. Hausner, “Simulating Decorative Mosaic,” Proc. ACM SIG-
GRAPH ’01, pp. 573-578, 2001.

[23] V. Ostromoukhov, “Digital Facial Engraving,” Proc. ACM SIG-
GRAPH ’99, pp. 417-424, 1999.

[24] A.W. Klein, P.-P. Sloan, A. Finkelstein, and M.F. Cohen, “Stylized
Video Cubes,” Proc. Symp. Computer Animation (SCA ’02), pp. 15-
22, 2002.

[25] J.P. Collomosse and P.M. Hall, “Cubist Style Rendering from
Photographs,” IEEE Trans. Visualization and Computer Graphics,
vol. 9, no. 4, pp. 443-453, Oct.-Dec. 2003.

[26] D. DeCarlo and A. Santella, “Stylization and Abstraction of
Photographs,” Proc. ACM SIGGRAPH ’02, pp. 769-776, 2002.

KANG ET AL.: FLOW-BASED IMAGE ABSTRACTION 75

Fig. 25. Flow-based abstraction of a large image.

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

[27] J. Canny, “A Computational Approach to Edge Detection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679-698, 1986.

[28] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach
toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, pp. 603-619, 2002.

[29] J. Wang, Y. Xu, H.-Y. Shum, and M.F. Cohen, “Video Tooning,”
ACM Trans. Graphics, vol. 23, no. 3, pp. 574-583, 2004.

[30] J.P. Collomosse, D. Rowntree, and P.M. Hall, “Stroke Surfaces:
Temporally Coherent Non-Photorealistic Animations from Vi-
deo,” IEEE Trans. Visualization and Computer Graphics, vol. 11,
no. 5, pp. 540-549, Sept./Oct. 2005.

[31] F. Wen, Q. Luan, L. Liang, Y.-Q. Xu, and H.-Y. Shum, “Color
Sketch Generation,” Proc. Non-Photorealistic Animation and Render-
ing (NPAR ’06), pp. 47-54, 2006.

[32] J. Fischer, D. Bartz, and W. Strasser, “Stylized Augmented Reality
for Improved Immersion,” Proc. IEEE Virtual Reality (VR ’05),
pp. 195-202, 2005.

[33] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and
Color Images,” Proc. IEEE Int’l Conf. Computer Vision (ICCV ’98),
pp. 839-846, 1998.

[34] A. Orzan, A. Bousseau, P. Barla, and J. Thollot, “Structure-
Preserving Manipulation of Photographs,” Proc. Non-Photorealistic
Animation and Rendering (NPAR ’07), pp. 103-110, 2007.

[35] H. Kang, C. Chui, and U. Chakraborty, “A Unified Scheme for
Adaptive Stroke-Based Rendering,” The Visual Computer, vol. 22,
no. 9, pp. 814-824, 2006.

[36] B. Gooch, E. Reinhard, and A. Gooch, “Human Facial Illustra-
tions,” ACM Trans. Graphics, vol. 23, no. 1, pp. 27-44, 2004.

[37] D. Marr and E.C. Hildreth, “Theory of Edge Detection,” Proc.
Royal Soc. London, pp. 187-217, 1980.

[38] H. Winnemöller, S. Olsen, and B. Gooch, “Real-Time Video
Abstraction,” Proc. ACM SIGGRAPH ’06, pp. 1221-1226, 2006.

[39] B.M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-Based
Modeling and Photo Editing,” Proc. ACM SIGGRAPH ’01, pp. 433-
442, 2001.

[40] F. Durand and J. Dorsey, “Fast Bilateral Filtering for the Display
of High-Dynamic-Range Images,” Proc. ACM SIGGRAPH ’02,
pp. 257-266, 2002.

[41] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral Mesh
Denoising,” Proc. ACM SIGGRAPH ’03, pp. 950-953, 2003.

[42] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and
K. Toyama, “Digital Photography with Flash and No-Flash Image
Pairs,” Proc. ACM SIGGRAPH ’04, pp. 664-672, 2004.

[43] J. Chen, S. Paris, and F. Durand, “Real-Time Edge-Aware Image
Processing with the Bilateral Grid,” Proc. ACM SIGGRAPH, 2007.

[44] J. Kopf, M.F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint
Bilateral Upsampling,” Proc. ACM SIGGRAPH, 2007.

[45] H. Kang, S. Lee, and C.K. Chui, “Coherent Line Drawing,” Proc.
Non-Photorealistic Animation and Rendering (NPAR ’07), pp. 43-50,
Aug. 2007.

[46] P. Perona, “Orientation Diffusions,” IEEE Trans. Image Processing,
vol. 7, no. 3, pp. 457-467, 1998.

[47] D. Tschumperlé and R. Deriche, “Orthonormal Vector Sets
Regularization with PDE’s and Applications,” Int’l J. Computer
Vision, vol. 50, no. 3, pp. 237-252, 2002.

[48] S. Paris, H. Briceño, and F. Sillion, “Capture of Hair Geometry
from Multiple Images,” ACM Trans. Graphics, vol. 23, no. 3,
pp. 712-719, 2004.

[49] B. Cabral and L. Leedom, “Imaging Vector Fields Using Line
Integral Convolution,” Proc. ACM SIGGRAPH ’93, pp. 263-270,
1993.

[50] T.Q. Pham and L. van Vliet, “Separable Bilateral Filtering for Fast
Video Preprocessing,” Proc. IEEE Conf. Multimedia and Expo
(ICME), 2005.

[51] T.Q. Pham, “Spatiotonal Adaptivity in Super-Resolution of
Undersampled Image Sequences,” PhD dissertation, Delft Univ.
of Technology, Jan. 2006.

[52] L. Alvarez, P. Lions, and J. Morel, “Image Selective Smoothing
and Edge Detection by Nonlinear Diffusion II,” SIAM J. Numerical
Analysis, vol. 29, no. 3, pp. 845-866, 1992.

[53] J. Weickert, “Anisotropic Diffusion in Image Processing,” PhD
dissertation, Dept. of Math., Univ. of Kaiserslautern, Jan. 1996.

[54] D. Tschumperlé, “Curvature-Preserving Regularization of Multi-
Valued Images Using PDE’s,” Proc. European Conf. Computer Vision
(ECCV ’06), pp. 295-307, 2006.

[55] B. Weiss, “Fast Median and Bilateral Filtering,” Proc. ACM
SIGGRAPH ’06, pp. 519-526, 2006.

[56] S. Paris and F. Durand, “A Fast Approximation of the Bilateral
Filter Using a Signal Processing Approach,” Proc. European Conf.
Computer Vision (ECCV ’06), pp. 568-580, 2006.

[57] M. Fisher, P. Schroder, M. Desbrun, and H. Hoppe, “Design of
Tangent Vector Fields,” Proc. ACM SIGGRAPH, 2007.

Henry Kang received the BS degree in compu-
ter science from Yonsei University, Korea, in
1994 and the MS and PhD degrees in computer
science from the Korea Advanced Institute of
Science and Technology (KAIST) in 1996 and
2002, respectively. He is an assistant professor
of computer science at the University of Mis-
souri, St. Louis. His research interests include
nonphotorealistic rendering and animation, illus-
trative visualization, image and video proces-

sing, image-based modeling and rendering, and facial expression
animation. He is a member of the IEEE.

Seungyong Lee received the BS degree in
computer science and statistics from Seoul
National University in 1988 and the MS and
PhD degrees in computer science from the
Korea Advanced Institute of Science and Tech-
nology (KAIST) in 1990 and 1995, respectively.
He is an associate professor of computer
science and engineering at the Pohang Uni-
versity of Science and Technology (POSTECH),
Korea. From 1995 to 1996, he worked at the City

College of New York as a postdoctoral research associate. Since 1996,
he has been a faculty member and leading the Computer Graphics
Group, POSTECH. From 2003 to 2004, he spent a sabbatical year at
MPI Informatik, Germany, as a visiting senior researcher. His current
research interests include 3D mesh processing, nonphotorealistic
rendering, image and video processing, 3D surface reconstruction,
and mobile graphics systems. He is a member of the IEEE.

Charles K. Chui received the BS, MS, and PhD
degrees from the University of Wisconsin,
Madison. He is currently a Curators’ professor
at the University of Missouri, St. Louis, and a
consulting professor of statistics at Stanford
University. His research interests include ap-
proximation theory, computational harmonic
analysis, surface subdivisions, and mathematics
of imaging. He is a coeditor in chief of Applied
and Computational Harmonic Analysis and

serves on the editorial board of seven other journals. He is a fellow of
the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

76 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Authorized licensed use limited to: University of Missouri. Downloaded on December 24, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

