
Lighting and Reflectance

COS 426, Spring 2015
Princeton University

R2Image *RayCast(R3Scene *scene, int width, int height)
{

 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;

}

Ray Casting

Without Illumination

Ray Casting
R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

 R3Intersection intersection = ComputeIntersection(scene, ray);
 return ComputeRadiance(scene, ray, intersection);

}

With Illumination

Illumination
•  How do we compute radiance for a sample ray 

once we know what it hits?

Angel Figure 6.2

ComputeRadiance(scene, ray, intersection)

Goal
•  Must derive computer models for ...
!  Emission at light sources
!  Scattering at surfaces
!  Reception at the camera

•  Desirable features …
!  Concise
!  Efficient to compute
!  “Accurate”

Overview
•  Direct Illumination
!  Emission at light sources
!  Scattering at surfaces

•  Global illumination
!  Shadows
!  Refractions
!  Inter-object reflections

Direct Illumination

Emission at Light Sources
•  IL(x,y,z,θ,φ,λ) ...
!  describes the intensity of energy,
!  leaving a light source, …
!  arriving at location(x,y,z), ...
!  from direction (θ,φ), ...
!  with wavelength λ (x,y,z)

Light

Empirical Models
•  Ideally measure irradiant energy for “all” situations
!  Too much storage
!  Difficult in practice

x,y,z,θ,φ,λ

OpenGL Light Source Models
•  Simple mathematical models:
!  Point light
!  Directional light
!  Spot light

Point Light Source
•  Models omni-directional point source
!  intensity (I0),
!  position (px, py, pz),
!  coefficients (ca, la, qa) for attenuation with distance (d)

2
0I

dqdlc
I

aaa
L ++
=

d

Light

(px, py, pz)

Point Light Source

•  Physically-based: “inverse square law”
!  ca = la = 0

•  Use ca and la ≠ 0 for non-physical effects
!  Better control of the look (artistic)

2
0I

dqdlc
I

aaa
L ++
=

Directional Light Source
•  Models point light source at infinity
!  intensity (I0),
!  direction (dx,dy,dz)

0IIL =

(dx, dy, dz)

No attenuation
with distance

Spot Light Source
•  Models point light source with direction
!  intensity (I0),
!  position (px, py, pz),
!  direction (dx, dy, dz)
!  attenuation with distance
!  falloff (sd), and cutoff (sc)

⎪⎩

⎪
⎨

⎧
≤Θ

++

Θ
=

otherwise0

,if)(cosI
2

0 sc
dqdlcI
aaa

sd

L

d

(px, py, pz)
D

L Θ = cos-1(L ⋅ D)

sc

Overview
•  Direct Illumination
!  Emission at light sources
!  Scattering at surfaces

•  Global illumination
!  Shadows
!  Refractions
!  Inter-object reflections

Direct Illumination

Scattering at Surfaces
Bidirectional Reflectance Distribution Function
fr(θi,φi,θo,φo,λ) ...
!  describes the aggregate fraction of incident energy,
!  arriving from direction (θi,φi), ...
!  leaving in direction (θo,φo), …
!  with wavelength λ

Surface

(θi,φi)

λ

(θo,φo)

Empirical Models
Ideally measure BRDF for “all” combinations of
angles: θi,φi,θo,φo
!  Difficult in practice
!  Too much storage

Parametric Models
Approximate BRDF with simple parametric function
that is fast to compute.
!  Phong [75]
!  Blinn-Phong [77]
!  Cook-Torrance [81]
!  He et al. [91]
!  Ward [92]
!  Lafortune et al. [97]
!  Ashikhmin et al. [00]
!  etc.

Lafortune [97]

Cook-Torrance [81]

OpenGL Reflectance Model
•  Simple analytic model:
!  diffuse reflection +
!  specular reflection +
!  emission +
!  “ambient”

Surface

Based on model
proposed by Phong

OpenGL Reflectance Model
•  Simple analytic model:
!  diffuse reflection +
!  specular reflection +
!  emission +
!  “ambient”

Surface

Based on Phong
illumination model
Based on model

proposed by Phong

Diffuse Reflection
•  Assume surface reflects equally in all directions
!  Examples: chalk, clay

Surface

Diffuse Reflection
•  What is brightness of surface?
!  Depends on angle of incident light

Surface

θ

Diffuse Reflection
•  What is brightness of surface?
!  Depends on angle of incident light

Surface

dL

Θ= cosdAdL

dA

θ

Diffuse Reflection
•  Lambertian model
!  cosine law (dot product)

LDD ILNKI)(⋅=

Surface

N
L

θ

OpenGL Reflectance Model
•  Simple analytic model:
!  diffuse reflection +
!  specular reflection +
!  emission +
!  “ambient”

Surface

Specular Reflection
•  Reflection is strongest near mirror angle
!  Examples: mirrors, metals

N

LR θθ

Specular Reflection
How much light is seen?
Depends on:
!  angle of incident light
!  angle to viewer

N

LR

V

Viewer
α

θθ

Specular Reflection
•  Phong Model
!  (cos α)n

L
n

SS IRVKI)(⋅=

N

LR

V

Viewer
α

θθ

This is a (vaguely physically-motivated) hack!

OpenGL Reflectance Model
•  Simple analytic model:
!  diffuse reflection +
!  specular reflection +
!  emission +
!  “ambient”

Surface

Emission
Represents light emanating directly from surface
!  Note: does not automatically act as light source! 

Does not affect other surfaces in scene!

Emission ≠ 0

OpenGL Reflectance Model
•  Simple analytic model:
!  diffuse reflection +
!  specular reflection +
!  emission +
!  “ambient”

Surface

Ambient Term

This is a hack (avoids complexity of global illumination)!

Represents reflection of all indirect illumination

OpenGL Reflectance Model
•  Simple analytic model:
!  diffuse reflection +
!  specular reflection +
!  emission +
!  “ambient”

Surface

OpenGL Reflectance Model
•  Simple analytic model:
!  diffuse reflection +
!  specular reflection +
!  emission +
!  “ambient”

Surface

OpenGL Reflectance Model
Sum diffuse, specular, emission, and ambient

Leonard McMillan, MIT

OpenGL Reflectance Model
Good model for plastic surfaces, …

Direct Illumination Calculation
Single light source:

L
n

SLDALAE IRVKILNKIKII)()(⋅+⋅++=

N

LR

V

Viewer
α

θθ

Direct Illumination Calculation
Multiple light sources:

() L
L

n
iSiDALAE IRVKLNKIKII ∑ ⋅+⋅++=)()(

N

L2

V

Viewer L1 Note:  
all of the
K and I  

are RGB
colors

Example from production
This scene had 400 virtual lights (~100 params)

Pixar

Overview
•  Direct Illumination
!  Emission at light sources
!  Scattering at surfaces

•  Global illumination
!  Shadows
!  Transmissions
!  Inter-object reflections

Global Illumination

Global Illumination

Greg Ward

Ray Casting (last lecture)
Trace primary rays from camera
!  Direct illumination from unblocked lights only

() L
L

n
iSiDALAE IRVKLNKIKII ∑ ⋅+⋅++=)()(

Shadows
Shadow term tells if light sources are blocked
!  Cast ray towards each light source
!  SL = 0 if ray is blocked, SL = 1 otherwise

Shadow
Term

() LL
L

n
iSiDALAE ISRVKLNKIKII ∑ ⋅+⋅++=)()(

Recursive Ray Tracing
Also trace secondary rays from hit surfaces
!  Mirror reflection and transparency

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Mirror reflections
Trace secondary ray in mirror direction
!  Evaluate radiance along secondary ray and  

include it into illumination model

Radiance
for mirror

reflection ray

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Transparency
Trace secondary ray in direction of refraction
!  Evaluate radiance along secondary ray and  

include it into illumination model

Radiance for
refraction ray

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Transparency
Transparency coefficient is fraction transmitted
!  KT = 1 for translucent object, KT = 0 for opaque
!  0 < KT < 1 for object that is semi-translucent

Transparency
Coefficient

Refractive Transparency
For thin surfaces, can ignore change in direction
!  Assume light travels straight through surface

N

L
Θi

T
Θr

ηr

ηi

Θi

T LT −≅

Refractive Tranparency

N

L
Θi

T
Θr

ηr

ηi

LNT
r

i
ri

r

i

η
η

η
η

−Θ−Θ=)coscos(

For solid objects, apply Snell’s law:
iirr Θ=Θ sinsin ηη

Recursive Ray Tracing
Ray tree represents illumination computation

Ray traced through scene Ray tree

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Recursive Ray Tracing
Ray tree represents illumination computation

Ray traced through scene Ray tree

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Recursive Ray Tracing
ComputeRadiance is called recursively

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection& hit)
{

 R3Ray specular_ray = SpecularRay(ray, hit);
 R3Ray refractive_ray = RefractiveRay(ray, hit);
 R3Rgb radiance = Phong(scene, ray, hit) +
 Ks * ComputeRadiance(scene, specular_ray) +

 Kt * ComputeRadiance(scene, refractive_ray);
 return radiance;

}

Example

Turner Whitted, 1980

Summary
•  Ray casting (direct Illumination)
!  Usually use simple analytic approximations for  

light source emission and surface reflectance

•  Recursive ray tracing (global illumination)
!  Incorporate shadows, mirror reflections,  

and pure refractions

More on global illumination after next week!

All of this is an approximation
so that it is practical to compute

Illumination Terminology
•  Radiant power [flux] (Φ)
!  Rate at which light energy is transmitted (in Watts).

•  Radiant Intensity (I)
!  Power radiated onto a unit solid angle in direction (in Watts/sr)

»  e.g.: energy distribution of a light source (inverse square law)

•  Radiance (L)
!  Radiant intensity per unit projected surface area (in Watts/m2sr)

»  e.g.: light carried by a single ray (no inverse square law)

•  Irradiance (E)
!  Incident flux density on a locally planar area (in Watts/m2)

»  e.g.: light hitting a surface at a point

•  Radiosity (B)
!  Exitant flux density from a locally planar area (in Watts/m2)

