4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context
4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context
Minimum spanning tree

Def. A spanning tree of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

![graph G](image_url)
Minimum spanning tree

Def. A **spanning tree** of G is a subgraph T that is:
- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

![Diagram of a minimum spanning tree](image)

not a tree (not connected)
Def. A **spanning tree** of G is a subgraph T that is:

- **A tree:** connected and acyclic.
- **Spanning:** includes all of the vertices.

not a tree (cyclic)
Minimum spanning tree

Def. A spanning tree of G is a subgraph T that is:
 - A tree: connected and acyclic.
 - Spanning: includes all of the vertices.

![Minimum spanning tree](image_url)
Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.
Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

Minimum spanning tree T
(weight = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7)

Brute force. Try all spanning trees?
Minimum spanning trees: quiz 1

Let G be a connected edge-weighted graph with V vertices and E edges. How many edges are in a MST of G?

A. $V - 1$

B. V

C. $E - 1$

D. E

E. I don't know.
Network design

MST of bicycle routes in North Seattle

http://www.flickr.com/photos/ewedistrict/21980840
Models of nature

MST of random graph

http://algo.inria.fr/broutin/gallery.html
MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html
Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).

4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context
Simplifying assumptions

For simplicity, we assume

- The graph is connected. \(\Rightarrow \) MST exists.
- The edge weights are distinct. \(\Rightarrow \) MST is unique.
Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.
Minimum spanning trees: quiz 2

Which is the min weight edge crossing the cut \{2, 3, 5, 6\}?

A. 0–7 (0.16)
B. 2–3 (0.17)
C. 0–2 (0.26)
D. 5–7 (0.28)
E. I don't know.

![Graph with edge weights](image-url)
Def. A **cut** in a graph is a partition of its vertices into two (nonempty) sets.

Def. A **crossing edge** connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Suppose min-weight crossing edge e is not in the MST.

- Adding e to the MST creates a cycle.
- Some other edge f in cycle must be a crossing edge.
- Removing f and adding e is also a spanning tree.
- Since weight of e is less than the weight of f, that spanning tree has lower weight.
- Contradiction. ▪
Greedy MST algorithm demo

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until $V-1$ edges are colored black.

![Diagram](an edge-weighted graph)
Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.
- Any edge colored black is in the MST (via cut property).
- Fewer than $V-1$ black edges \Rightarrow cut with no black crossing edges. (consider cut whose vertices are any one connected component)

![Diagram with Explanation]
Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST.

Efficient implementations. Find cut? Find min-weight edge?

Ex 1. Kruskal's algorithm. [stay tuned]

Ex 2. Prim's algorithm. [stay tuned]

Ex 3. Borůvka's algorithm.
Removing two simplifying assumptions

Q. What if edge weights are not all distinct?
A. Greedy MST algorithm correct even if equal weights are present!
 (our correctness proof fails, but that can be fixed)

Q. What if graph is not connected?
A. Compute minimum spanning forest = MST of each component.
Greed is good

Gordon Gecko (Michael Douglas) address to Teldar Paper Stockholders in Wall Street (1986)
4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context
Weighted edge API

Edge abstraction needed for weighted edges.

public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

int compareTo(Edge that) compare this edge to that edge

double weight() the weight

String toString() string representation

Idiom for processing an edge e: int v = e.either(), w = e.other(v);
public class Edge implements Comparable<Edge> {
 private final int v, w;
 private final double weight;

 public Edge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either() {
 return v;
 }

 public int other(int vertex) {
 if (vertex == v) return w;
 else return v;
 }

 public int compareTo(Edge that) {
 if (this.weight < that.weight) return -1;
 else if (this.weight > that.weight) return +1;
 else return 0;
 }
}
Edge-weighted graph API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>public class EdgeWeightedGraph</code></td>
<td></td>
</tr>
<tr>
<td><code>EdgeWeightedGraph(int V)</code></td>
<td>create an empty graph with V vertices</td>
</tr>
<tr>
<td><code>EdgeWeightedGraph(In in)</code></td>
<td>create a graph from input stream</td>
</tr>
<tr>
<td><code>void addEdge(Edge e)</code></td>
<td>add weighted edge e to this graph</td>
</tr>
<tr>
<td><code>Iterable<Edge> adj(int v)</code></td>
<td>edges incident to v</td>
</tr>
<tr>
<td><code>Iterable<Edge> edges()</code></td>
<td>all edges in this graph</td>
</tr>
<tr>
<td><code>int V()</code></td>
<td>number of vertices</td>
</tr>
<tr>
<td><code>int E()</code></td>
<td>number of edges</td>
</tr>
<tr>
<td><code>String toString()</code></td>
<td>string representation</td>
</tr>
</tbody>
</table>

Conventions. Allow self-loops and parallel edges.
Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.
Edge-weighted graph: adjacency-lists implementation

```java
public class EdgeWeightedGraph {
    private final int V;
    private final Bag<Edge>[] adj;

    public EdgeWeightedGraph(int V) {
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Edge>();
    }

    public void addEdge(Edge e) {
        int v = e.either(), w = e.other(v);
        adj[v].add(e);
        adj[w].add(e);
    }

    public Iterable<Edge> adj(int v) {
        return adj[v];
    }
}
```

- **same as Graph, but adjacency lists of Edges instead of integers**
- **constructor**
- **add edge to both adjacency lists**
Minimum spanning tree API

Q. How to represent the MST?

```java
public class MST
{
    MST(EdgeWeightedGraph G) constructor
    Iterable<Edge> edges() edges in MST
    double weight() weight of MST
}
```
4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- context
Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

an edge-weighted graph
Kruskal's algorithm: visualization
Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.
- Suppose Kruskal's algorithm colors the edge \(e = v–w \) black.
- Cut = set of vertices connected to \(v \) in tree \(T \).
- No crossing edge is black.
- No crossing edge has lower weight. Why?

![Add edge to tree diagram]
Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v–w to tree T create a cycle? If not, add it.

How difficult to implement?

A. $E + V$

B. V

C. $\log V$

D. $\log^* V$

E. 1

add edge to tree

adding edge to tree would create a cycle
Kruskal's algorithm: implementation challenge

Challenge. Would adding edge $v-w$ to tree T create a cycle? If not, add it.

Efficient solution. Use the **union-find** data structure.
- Maintain a set for each connected component in T.
- If v and w are in same set, then adding $v-w$ would create a cycle.
- To add $v-w$ to T, merge sets containing v and w.

Case 1: adding $v-w$ creates a cycle

Case 2: add $v-w$ to T and merge sets containing v and w
Kruskal's algorithm: Java implementation

```java
public class KruskalMST
{
    private Queue<Edge> mst = new Queue<Edge>();

    public KruskalMST(EdgeWeightedGraph G)
    {
        MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
        UF uf = new UF(G.V());
        while (!pq.isEmpty() && mst.size() < G.V()-1)
        {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (!uf.connected(v, w))
            {
                uf.union(v, w);
                mst.enqueue(e);
            }
        }
    }

    public Iterable<Edge> edges()
    {
        return mst;
    }
}
```

build priority queue (or sort)
greedily add edges to MST
edge v–w does not create cycle
merge connected components
add edge e to MST
Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>build pq</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>delete-min</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>union</td>
<td>V</td>
<td>$\log^* V$</td>
</tr>
<tr>
<td>connected</td>
<td>E</td>
<td>$\log^* V$</td>
</tr>
</tbody>
</table>

† amortized bound using weighted quick union with path compression

often called fewer than E times
4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context
Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

![an edge-weighted graph](image)
Prim’s algorithm: visualization
Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim's algorithm computes the MST.

Pf. Prim's algorithm is a special case of the greedy MST algorithm.

- Suppose edge \(e = \min \) weight edge connecting a vertex on the tree to a vertex not on the tree.
- Cut = set of vertices connected on tree.
- No crossing edge is black.
- No crossing edge has lower weight.

![Diagram showing edge e = 7-5 added to tree](image-url)
Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

A. E

B. V

C. $\log E$

D. 1

E. *I don't know.*

1-7 is min weight edge with exactly one endpoint in T
Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge $e = v\rightarrow w$ to add to T.
- Disregard if both endpoints v and w are marked (both in T).
- Otherwise, let w be the unmarked vertex (not in T):
 - add e to T and mark w
 - add to PQ any edge incident to w (assuming other endpoint not in T)

1-7 is min weight edge with exactly one endpoint in T.
Prim's algorithm: lazy implementation demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

![an edge-weighted graph]

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>1-3</td>
<td>0.29</td>
</tr>
<tr>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Prim's algorithm: lazy implementation

```java
public class LazyPrimMST
{
    private boolean[] marked; // MST vertices
    private Queue<Edge> mst; // MST edges
    private MinPQ<Edge> pq; // PQ of edges

    public LazyPrimMST(WeightedGraph G)
    {
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);

        while (!pq.isEmpty() && mst.size() < G.V() - 1)
        {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (marked[v] && marked[w]) continue;
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
            if (!marked[w]) visit(G, w);
        }
    }
}
```

- Assume G is connected
- Repeatedly delete the min weight edge $e = v\rightarrow w$ from PQ
- Ignore if both endpoints in T
- Add edge e to tree
- Add either v or w to tree
Prim's algorithm: lazy implementation

```java
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{   return mst;   }
```

- add v to T
- for each edge e = v–w, add to PQ if w not already in T
Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete min</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>$\log E$</td>
</tr>
</tbody>
</table>
Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

Observation. For each vertex v, need only lightest edge connecting v to T.
- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?
Prim's algorithm: eager implementation demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

an edge-weighted graph
Prim's algorithm: eager implementation demo

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V - 1 \) edges.

```
<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>2–3</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>4–5</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>6–2</td>
<td>0.40</td>
</tr>
</tbody>
</table>
```

MST edges

0–7 1–7 0–2 2–3 5–7 4–5 6–2
Challenge. Find min weight edge with exactly one endpoint in T.

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex $v = \text{weight of lightest edge connecting } v \text{ to } T$.
- Delete min vertex v and add its associated edge $e = v – w$ to T.
- Update PQ by considering all edges $e = v – x$ incident to v
 - ignore if x is already in T
 - add x to PQ if not already on it
 - decrease priority of x if $v–x$ becomes lightest edge connecting x to T
Indexed priority queue

Associate an index between 0 and \(N – 1 \) with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

```java
public class IndexMinPQ<Key extends Comparable<Key>>
{
    IndexMinPQ(int N) // create indexed priority queue with indices 0, 1, ..., N – 1
    void insert(int i, Key key) // associate key with index i
    int delMin() // remove a minimal key and return its associated index
    void decreaseKey(int i, Key key) // decrease the key associated with index i
    boolean contains(int i) // is i an index on the priority queue?
    boolean isEmpty() // is the priority queue empty?
    int size() // number of keys in the priority queue
}
```
Indexed priority queue: implementation

Binary heap implementation. [see Section 2.4 of textbook]

- Start with same code as MinPQ.
- Maintain parallel arrays so that:
 - keys[i] is the priority of vertex i
 - qp[i] is the heap position of vertex i
 - pq[i] is the index of the key in heap position i
- Use swim(qp[i]) to implement decreaseKey(i, key).

Example

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys[i]</td>
<td>A</td>
<td>S</td>
<td>0</td>
<td>R</td>
<td>T</td>
<td>I</td>
<td>N</td>
<td>G</td>
<td>-</td>
</tr>
<tr>
<td>qp[i]</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>pq[i]</td>
<td>-</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Vertex 2 is at heap index 4

Decrease key of vertex 2 to C
Prim's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$E \log V$</td>
</tr>
<tr>
<td>d-way heap</td>
<td>$\log_d V$</td>
<td>$d \log_d V$</td>
<td>$\log_d V$</td>
<td>$E \log_{E/V} V$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>1^\dagger</td>
<td>$\log V^\dagger$</td>
<td>1^\dagger</td>
<td>$E + V \log V$</td>
</tr>
</tbody>
</table>

† amortized

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context
Does a linear-time MST algorithm exist?

<table>
<thead>
<tr>
<th>year</th>
<th>worst case</th>
<th>discovered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>$E \log \log V$</td>
<td>Yao</td>
</tr>
<tr>
<td>1976</td>
<td>$E \log \log V$</td>
<td>Cheriton-Tarjan</td>
</tr>
<tr>
<td>1984</td>
<td>$E \log^* V, E + V \log V$</td>
<td>Fredman-Tarjan</td>
</tr>
<tr>
<td>1986</td>
<td>$E \log (\log^* V)$</td>
<td>Gabow-Galil-Spencer-Tarjan</td>
</tr>
<tr>
<td>1997</td>
<td>$E \alpha(V) \log \alpha(V)$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2000</td>
<td>$E \alpha(V)$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2002</td>
<td>optimal</td>
<td>Pettie-Ramachandran</td>
</tr>
<tr>
<td>20xx</td>
<td>E</td>
<td>???</td>
</tr>
</tbody>
</table>

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).
Euclidean MST

Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute $\sim N^2/2$ distances and run Prim's algorithm.

Ingenuity. Exploit geometry and do it in $N \log N$ time.
Problem. Given an edge-weighted graph G, find a spanning tree that maximizes the sum of the edge weights.

Running time. $E \log E$ (or better).
Minimum Bottleneck Spanning Tree

Problem. Given an edge-weighted graph G, find a spanning tree that minimizes the maximum weight of any edge in the spanning tree.

Running time. $E \log E$ (or better).

Note: need to be a MST

minimum bottleneck spanning tree T (bottleneck $= 9$)
Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

![Map showing an outbreak of cholera deaths in London in 1850s](image)

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.
Single-link clustering

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that maximizes the distance between two closest clusters.
Single-link clustering algorithm

“Well-known” algorithm in science literature for single-link clustering:

- Form \(V \) clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly \(k \) clusters.

Observation. This is Kruskal's algorithm. (stopping when \(k \) connected components)

Alternate solution. Run Prim; then delete \(k - 1 \) max weight edges.
Tumors in similar tissues cluster together.

Reference: Botstein & Brown group