4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

[Diagram of a directed graph with labeled vertices and edges indicating outdegree and indegree, a directed path from 0 to 2, and a directed cycle.]
Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Overnight interbank loan graph

Vertex = bank; edge = overnight loan.
Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/
Combinational circuit

Vertex = logical gate; edge = wire.
WordNet graph

Vertex = synset; edge = hypernym relationship.

http://wordnet.princeton.edu
Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Some digraph problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s→t path</td>
<td>Is there a path from s to t?</td>
</tr>
<tr>
<td>shortest s→t path</td>
<td>What is the shortest path from s to t?</td>
</tr>
<tr>
<td>directed cycle</td>
<td>Is there a directed cycle in the graph?</td>
</tr>
<tr>
<td>topological sort</td>
<td>Can the digraph be drawn so that all edges point upwards?</td>
</tr>
<tr>
<td>strong connectivity</td>
<td>Is there a directed path between all pairs of vertices?</td>
</tr>
<tr>
<td>transitive closure</td>
<td>For which vertices v and w is there a directed path from v to w?</td>
</tr>
<tr>
<td>PageRank</td>
<td>What is the importance of a web page?</td>
</tr>
</tbody>
</table>
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Digraph API

Almost identical to Graph API.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digraph(int V)</td>
<td>create an empty digraph with V vertices</td>
</tr>
<tr>
<td>Digraph(In in)</td>
<td>create a digraph from input stream</td>
</tr>
<tr>
<td>void addEdge(int v, int w)</td>
<td>add a directed edge v→w</td>
</tr>
<tr>
<td>Iterable<Integer> adj(int v)</td>
<td>vertices adjacent from v</td>
</tr>
<tr>
<td>int V()</td>
<td>number of vertices</td>
</tr>
<tr>
<td>int E()</td>
<td>number of edges</td>
</tr>
<tr>
<td>Digraph reverse()</td>
<td>reverse of this digraph</td>
</tr>
<tr>
<td>String toString()</td>
<td>string representation</td>
</tr>
</tbody>
</table>
Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.
Which is order of growth of running time of the following code fragment if the digraph uses the adjacency-lists representation?

A. \(V \)

B. \(E + V \)

C. \(V^2 \)

D. \(V \times E \)

E. I don't know.

```java
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);

prints each edge exactly once
```
Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent from \(v \).
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from (v) to (w)</th>
<th>edge from (v) to (w)?</th>
<th>iterate over vertices adjacent from (v)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>(E)</td>
<td>1</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>(V^2)</td>
<td>(1)†</td>
<td>(1)</td>
<td>(V)</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>(E + V)</td>
<td>1</td>
<td>(\text{outdegree}(v))</td>
<td>(\text{outdegree}(v))</td>
</tr>
</tbody>
</table>

† disallows parallel edges.
Adjacency-lists graph representation (review): Java implementation

```java
public class Graph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[][]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- **Adjacency lists**: Represents a graph using adjacency lists, where each vertex is associated with a list of its adjacent vertices.
- **Create empty graph with V vertices**: Initializes a graph with V vertices by creating an array of Bag objects, each representing the list of adjacent vertices for a vertex.
- **Add edge v–w**: Adds an edge between two vertices v and w by adding w to the list of adjacent vertices of v and vice versa.
- **Iterator for vertices adjacent to v**: Returns an iterable of adjacent vertices for a given vertex v.
Adjacency-lists digraph representation: Java implementation

```java
public class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Reachability

Problem. Find all vertices reachable from \(s \) along a directed path.
Depth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

```
DFS (to visit a vertex v)
Mark vertex v.
Recursively visit all unmarked vertices w adjacent from v.
```
Depth-first search demo

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.

a directed graph
To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices adjacent from \(v \).

Depth-first search demo

<table>
<thead>
<tr>
<th>(v)</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>

reachable from vertex 0
Recall code for **undirected** graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

Depth-first search (in undirected graphs)

true if connected to s

constructor marks vertices connected to s

recursive DFS does the work

client can ask whether any vertex is connected to s
Depth-first search (in directed graphs)

Code for **directed** graphs identical to undirected one.

[Substitute `Digraph` for `Graph`]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- True if path from `s`
- Constructor marks vertices reachable from `s`
- Recursive DFS does the work
- Client can ask whether any vertex is reachable from `s`
Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
 • Vertex = object.
 • Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

✓ Reachability.
✓ Path finding.
✓ Topological sort.
✓ Directed cycle detection.

Basis for solving difficult digraph problems.

• 2-satisfiability.
• Directed Euler path.
• Strongly-connected components.
Breadth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

- Put s onto a FIFO queue, and mark s as visited.
- Repeat until the queue is empty:
 - remove the least recently added vertex v
 - for each unmarked vertex adjacent from v:
 - add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.
Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.

graph G
Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.

```
  0 1 2 3 4 5
  \  /     /\  /
   \|   \ v   |   |
    \ /     |\  /\
      \    / \   |
       \  /   |  /    
        \|   |   |   |
         0 1 2 3 4 5
```

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

done
MULTIPLE-SOURCE SHORTEST PATHS

Given a digraph and a set of source vertices, find shortest path from any vertex in the set to every other vertex.

Ex. \(S = \{ 1, 7, 10 \} \).
- Shortest path to 4 is 7→6→4.
- Shortest path to 5 is 7→6→0→5.
- Shortest path to 12 is 10→12.

Q. How to implement multi-source shortest paths algorithm?
Suppose that you want to design a web crawler. Which graph search algorithm should you use?

A. Depth-first search
B. Breadth-first search
C. Either A or B
D. Neither A nor B
E. I don't know.

Directed graphs: quiz 2
Web crawler output

BFS crawl

http://www.princeton.edu
http://www.w3.org
http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qeprize.org
http://en.wikipedia.org
...

DFS crawl

http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://img1.blogblog.com
http://feeds.feedburner.com
http://buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearch1.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.laketahoe.com
http://ethel.tahoeguide.com
...

35
Breadth-first search in digraphs application: web crawler

Solution. [BFS with implicit digraph]
- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a set of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).
Bare-bones web crawler: Java implementation

```java
Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
    String v = queue.dequeue();
    System.out.println(v);
    InputStream in = new InputStream(v);
    String input = in.readAll();

    String regexp = "http://([^/\s]+)\(([^/\s]+)";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
        String w = matcher.group();
        if (!marked.contains(w))
        {
            marked.add(w);
            queue.enqueue(w);
        }
    }
}
```

- queue of websites to crawl
- set of marked websites
- start crawling from root website
- read in raw html from next website in queue
- use regular expression to find all URLs in website of form http://xxx.yyy.zzz [crude pattern misses relative URLs]
- if unmarked, mark it and put on the queue
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.
Topological sort

DAG. Directed **acyclic** graph.

Topological sort. Redraw DAG so all edges point upwards.

 directed edges

\[
\begin{align*}
0 &\rightarrow 5 & 0 &\rightarrow 2 \\
0 &\rightarrow 1 & 3 &\rightarrow 6 \\
3 &\rightarrow 5 & 3 &\rightarrow 4 \\
5 &\rightarrow 2 & 6 &\rightarrow 4 \\
6 &\rightarrow 0 & 3 &\rightarrow 2 \\
1 &\rightarrow 4
\end{align*}
\]

Solution. DFS. What else?
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

a directed acyclic graph

tinyDAG7.txt

```
7
11
0 5
0 2
0 1
3 6
3 5
3 4
5 2
6 4
6 0
3 2
```
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
4 1 2 5 0 6 3
topological order
3 6 0 5 2 1 4
done
public class DepthFirstOrder
{
 private boolean[] marked;
 private Stack<Integer> reversePostorder;

 public DepthFirstOrder(Digraph G)
 {
 reversePostorder = new Stack<Integer>();
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) dfs(G, v);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 reversePostorder.push(v);
 }

 public Iterable<Integer> reversePostorder()
 {
 return reversePostorder;
 }
}
Topological sort in a DAG: intuition

Why does topological sort algorithm work?

- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ...

Diagram:

```
0
/|
| |
2 5
|
|
3
|
|
1
|
|
4
|
|
6
```

Postorder: 4 1 2 5 0 6 3

Topological order: 3 6 0 5 2 1 4
Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When $dfs(v)$ is called:

- **Case 1:** $dfs(w)$ has already been called and returned.
 - thus, w appears before v in postorder

- **Case 2:** $dfs(w)$ has not yet been called.
 - $dfs(w)$ will get called directly or indirectly by $dfs(v)$
 - so, $dfs(w)$ will finish before $dfs(v)$
 - thus, w appears before v in postorder

- **Case 3:** $dfs(w)$ has already been called, but has not yet returned.
 - function-call stack contains path from w to v
 - edge $v \rightarrow w$ would complete a cycle
 - contradiction (this case can't happen in a DAG)
Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

![Directed cycle detection diagram](image)

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.
Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

![Course Table]

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.
Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```java
public class A extends B {
    ...
}

public class B extends C {
    ...
}

public class C extends A {
    ...
}
```

```bash
% javac A.java
A.java:1: cyclic inheritance involving A
public class A extends B {
    }
    ^
1 error
```
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)
Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.
- **Preorder:** order in which `dfs()` is called.
- **Postorder:** order in which `dfs()` returns.
- **Reverse postorder:** reverse order in which `dfs()` returns.

```java
private void dfs(Graph G, int v)
{
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    postorder.enqueue(v);
    reversePostorder.push(v);
}
```
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Strongly-connected components

Def. Vertices \(v \) and \(w \) are strongly connected if there is both a directed path from \(v \) to \(w \) and a directed path from \(w \) to \(v \).

Key property. Strong connectivity is an equivalence relation:
- \(v \) is strongly connected to \(v \).
- If \(v \) is strongly connected to \(w \), then \(w \) is strongly connected to \(v \).
- If \(v \) is strongly connected to \(w \) and \(w \) to \(x \), then \(v \) is strongly connected to \(x \).

Def. A strong component is a maximal subset of strongly-connected vertices.
Directed graphs: quiz 3

How many strong components are in a DAG with V vertices and E edges?

A. 0

B. 1

C. V

D. E

E. I don't know.
Connected components vs. strongly-connected components

v and w are **connected** if there is a path between v and w

3 connected components

connected component id (easy to compute with DFS)

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 10 11 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[] 0 0 0 0 0 1 1 1 2 2 2 2</td>
</tr>
</tbody>
</table>

public boolean connected(int v, int w) {
 return id[v] == id[w];
}

constant-time client connectivity query

v and w are **strongly connected** if there is both a directed path from v to w and a directed path from w to v

5 strongly-connected components

strongly-connected component id (how to compute?)

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 10 11 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[] 1 0 1 1 1 1 3 4 3 2 2 2 2</td>
</tr>
</tbody>
</table>

public boolean stronglyConnected(int v, int w) {
 return id[v] == id[w];
}

constant-time client strong-connectivity query
Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.
Strong component application: software modules

Software module dependency graph.
- Vertex = software module.
- Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!
Strong components algorithms: brief history

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju–Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan–Mehlhorn: needed one-pass algorithm for LEDA.
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R.

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

how to compute?

first vertex is a sink (has no edges pointing from it)
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

```
digraph G {
0
1
2
3
4
5
6
7
8
9
10
11
12
}
```
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse digraph G^R
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

done
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G^R

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

reverse postorder for use in second dfs ()
1 0 2 4 5 3 11 9 12 10 6 7 8
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.
Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.

- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!
public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];

 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean connected(int v, int w)
 {
 return id[v] == id[w];
 }
}
public class KosarajuSharirSCC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSharirSCC(Digraph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePostorder())
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean stronglyConnected(int v, int w)
 { return id[v] == id[w]; }
}
Digraph-processing summary: algorithms of the day

<table>
<thead>
<tr>
<th>Algorithm Name</th>
<th>Description</th>
<th>Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-source reachability in a digraph</td>
<td></td>
<td>DFS</td>
</tr>
<tr>
<td>topological sort in a DAG</td>
<td></td>
<td>DFS</td>
</tr>
<tr>
<td>strong components in a digraph</td>
<td></td>
<td>Kosaraju-Sharir DFS (twice)</td>
</tr>
</tbody>
</table>