
1

Machine Language,

Assemblers, and Linkers

2

Goals of this Lecture

Help you to learn about:
• IA-32 machine language (in general)

• The assembly and linking processes

Why?
• Last stop on the “language levels” tour

• A power programmer knows the relationship between assembly and

machine languages

• A systems programmer knows how an assembler translates

assembly language code to machine language code

Agenda

Machine Language

The Assembly Process

The Linking Process

3

4

IA-32 Machine Language

IA-32 machine language
• Difficult to generalize about IA-32 instruction format

• Many (most!) instructions are exceptions to the rules

• Many instructions use this format…

5

IA-32 Instruction Format

Instruction
prefixes

Opcode ModR/M SIB Displacement Immediate

Up to 4

prefixes of

1 byte each

(optional)

1, 2, or 3

bytes

1 byte

(if required)

1 byte

(if required)

1, 2, or 4

bytes

(if required)

1, 2, or 4

bytes

(if required)

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Instruction prefix
• Sometimes a repeat count

• Rarely used; don’t be concerned

6

IA-32 Instruction Format (cont.)

Instruction
prefixes

Opcode ModR/M SIB Displacement Immediate

Up to 4

prefixes of

1 byte each

(optional)

1, 2, or 3

bytes

1 byte

(if required)

1 byte

(if required)

1, 2, or 4

bytes

(if required)

1, 2, or 4

bytes

(if required)

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Opcode
• Specifies which operation should be performed

• Add, move, call, etc.

• Sometimes specifies additional (or less) information

7

IA-32 Instruction Format (cont.)

Instruction
prefixes

Opcode ModR/M SIB Displacement Immediate

Up to 4

prefixes of

1 byte each

(optional)

1, 2, or 3

bytes

1 byte

(if required)

1 byte

(if required)

1, 2, or 4

bytes

(if required)

1, 2, or 4

bytes

(if required)

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

ModR/M (register mode, register/opcode, register/memory)
• Specifies types of operands (immediate, register, memory)

• Specifies sizes of operands (byte, word, long)

• Sometimes specifies register(s):

000 = EAX/AL; 011 = EBX/BL; 001 = ECX/CL; 010 = EDX/DL;

110 = ESI/DH; 111 = EDI/BH; 101 = EBP/CH; 110 = ESP/AH

• Sometimes contains an extension of the opcode

8

IA-32 Instruction Format (cont.)

Instruction
prefixes

Opcode ModR/M SIB Displacement Immediate

Up to 4

prefixes of

1 byte each

(optional)

1, 2, or 3

bytes

1 byte

(if required)

1 byte

(if required)

1, 2, or 4

bytes

(if required)

1, 2, or 4

bytes

(if required)

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

SIB (scale, index, base)
• Used when one of the operands is a memory operand

that uses a scale, an index register, and/or a base register

9

IA-32 Instruction Format (cont.)

Instruction
prefixes

Opcode ModR/M SIB Displacement Immediate

Up to 4

prefixes of

1 byte each

(optional)

1, 2, or 3

bytes

1 byte

(if required)

1 byte

(if required)

1, 2, or 4

bytes

(if required)

1, 2, or 4

bytes

(if required)

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Displacement
• Part of memory operand, or…

• In jump and call instructions, indicates the displacement between

the destination instruction and the jump/call instruction

• More precisely, indicates:

[addr of destination instr] – [addr of instr following the jump/call]

• Uses little-endian byte order

10

IA-32 Instruction Format (cont.)

Instruction
prefixes

Opcode ModR/M SIB Displacement Immediate

Up to 4

prefixes of

1 byte each

(optional)

1, 2, or 3

bytes

1 byte

(if required)

1 byte

(if required)

1, 2, or 4

bytes

(if required)

1, 2, or 4

bytes

(if required)

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Immediate
• Specifies an immediate operand

• Uses little-endian byte order

Example 1

Assembly lang: addl %eax, %ebx

Machine lang: 01C3

Explanation:

00000001 11000011

Opcode: This is an add instruction whose src operand is a

32-bit register and whose dest operand is a 32-bit register

or memory operand

ModR/M: The M field of the ModR/M byte designates

a register

ModR/M: The src register is EAX

ModR/M: The dest register is EBX

Observation: Sometimes opcode specifies operation (e.g. add)

and format(s) of operand(s)

11

Example 2

Assembly lang: movl $1, %ebx

Machine lang: BB010000

Explanation:

10111011 00000001 00000000 00000000 00000000

Opcode: This is a mov instruction whose src operand is a 4-byte

immediate and whose destination operand is the EBX register

Immediate: The immediate operand is 1

Observation: Sometimes opcode specifies operation and operand(s)

Observation: Immediate operands are in little-endian byte order

12

Examples 3, 4

Assembly lang: pushl %eax

Machine lang: 50

Explanation:

01010000

Opcode: This is a pushl %eax instruction

Assembly lang: pushl %ecx

Machine lang: 51

Explanation:

01010001

Opcode: This is a pushl %ecx instruction

Observation: Sometimes opcode specifies operation and operand(s)
Observation: pushl is used often, so is optimized

13

Example 5

Assembly lang: movl -8(%eax,%ebx,4), %edx

Machine lang: 8B5498F8

Explanation:

10001011 01010100 10011000 11111000

Opcode: This is a mov instruction whose src operand is a

32-bit register or memory operand and whose dest operand is a

32-bit register

ModR/M: The src operand is a 32-bit register, the

dest operand is of the form disp(base,index,scale),

and the disp is one-byte

ModR/M: The destination register is EDX

SIB: The scale is 4

SIB: The index register is EBX

SIB: The base register is EAX

Displacement: The disp is -8

Observation: Two’s complement notation

Observation: Complicated!!!
14

15

CISC and RISC

IA-32 machine language instructions are complex

IA-32 is a
• Complex Instruction Set Computer (CISC)

Alternative:
• Reduced Instruction Set Computer (RISC)

16

CISC and RISC Characteristics

CISC RISC

Many instructions Few instructions

Many memory addressing

modes (direct, indirect,

base+displacement,

indexed, scaled indexed)

Few memory addressing

modes (typically only direct

and indirect)

Hardware interpretation is

complex

Hardware interpretation is

simple

Need relatively few

instructions to accomplish a

given job (expressive)

Need relatively many

instructions to accomplish a

given job (not expressive)

Example: IA-32 Examples: MIPS, SPARC

17

CISC and RISC History

Stage 1: Programmers compose assembly language
• Important that assembly/machine language be expressive

• CISC dominated (esp. Intel)

Stage 2: Programmers compose high-level language
• Not important that assembly/machine language be expressive; the

compiler generates it

• Important that compilers work well => assembly/machine language

should be simple

• RISC took a foothold (but CISC, esp. Intel, persists)

Stage 3: Compilers get smarter
• Less important that assembly/machine language be simple

• Hardware is plentiful, enabling complex implementations

• Much motivation for RISC disappears

• CISC (esp. Intel) dominates the computing world

Agenda

Machine Language

The Assembly Process

The Linking Process

18

The Build Process

mypgm.c

mypgm.i

mypgm.s

mypgm.o

mypgm

libc.a

Preprocess

Compile

Assemble

Link

Covered in COS 320:

Compiling Techniques

Covered

here

19

20

The “Forward Reference” Problem

Problem

• Assembler must generate machine lang code for jmp mylabel

• Machine lang jmp instr must contain displacement between

mylabel label and jmp instr

• But assembler hasn’t yet seen the def of mylabel

• I.e., the jmp instr contains a forward reference to mylabel

…

jmp mylabel

…

mylabel:

…

Any assembler must

deal with the

forward reference

problem

21

The “Forward Reference” Solution

Solution
• Assembler performs 2 passes over assembly lang program

• One to record labels and the address that they denote

• Another to generate code

Different assemblers perform different tasks in each pass

One straightforward design…

22

The “Forward Reference” Solution

Pass1
• Assembler traverses assembly lang program to create…

• Symbol table

• Key: label

• Value: information about label

• Which section, what offset within that section, …

Pass 2
• Assembler traverses assembly lang program again to create…

• RODATA section

• DATA section

• BSS section

• TEXT section

23

The “Relocation” Problem

Problem

• Assembler must generate machine lang code for call printf

• Machine lang call instr must contain displacment between

printf label and call instr

• But assembler hasn’t yet seen the def of printf label

• And assembler never will see the def of printf label!!!

• printf label isn’t defined in this .s file

…

call printf

…

Any assembler must

deal with the

relocation problem

The “Relocation” Solution

Solution:
• Assembler generates as much code as it can

• Assembler generates relocation records

Relocation record
• Request from assembler to linker to patch code at a specified place

24

The “Relocation” Solution

Pass1
• Assembler traverses assembly lang program to create…

• Symbol table

• Key: label

• Value: information about label

• Which section, what offset within that section, …

Pass 2
• Assembler traverses assembly lang program again to create…

• RODATA section

• DATA section

• BSS section

• TEXT section

• Relocation records

• Each describes a patch that the linker must perform

25

26

An Example Program

A simple

(nonsensical)

program:

Let’s consider how the

assembler handles that

program…

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

#include <stdio.h>

int main(void)

{ if (getchar() == 'A')

printf("Hi\n");

return 0;

}

27

Assembler Data Structures (1)

Symbol Table

Relocation Records

RODATA Section (location counter: 0)

TEXT Section (location counter: 0)

Label Section Offset Local? Seq#

Section Offset Rel Type Seq#

Offset Contents Explanation

Offset Contents Explanation

• No DATA or BSS

section in this program

• Initially all data structures

are empty

28

Assembler Pass 1

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler adds binding

to Symbol Table…

Assembler notes that

the current section is

RODATA

29

Assembler Data Structures (2)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 0)

• (Same)

TEXT Section (location counter: 0)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

• msg marks a spot in the

RODATA section at offset 0

• msg is a local label

• Assign msg sequence number 0

30

Assembler Pass 1 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler increments

RODATA section

location counter by

byte count of the

string (4)…

31

Assembler Data Structures (3)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 0)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

• RODATA location counter

now is 4

• If another label were defined

at this point, it would mark a

spot in RODATA at offset 4

32

Assembler Pass 1 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler notes

that current section

is TEXT

Assembler does

nothing

Assembler adds binding

to Symbol Table…

33

Assembler Data Structures (4)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 0)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 local 1

• main marks a spot in the TEXT

section at offset 0

• main is a local label (assembler

will discover otherwise in Pass 2)

• Assign main sequence number 1

34

Assembler Pass 1 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler increments

TEXT section location

counter by the length

of each instruction…

35

Assembler Data Structures (5)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 26)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 local 1

• TEXT location counter

now is 26

• If another label were

defined at this point, it

would mark a spot

in TEXT at offset 26

36

Assembler Pass 1 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler adds binding

to Symbol Table…

37

Assembler Data Structures (6)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 26)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 local 1

skip TEXT 26 local 2

• skip marks a spot in the TEXT

section at offset 26

• skip is a local label

• Assign skip sequence number 2

38

Assembler Pass 1 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler increments

TEXT section location

counter by the length

of each instruction…

39

Assembler Data Structures (7)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 35)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 local 1

skip TEXT 26 local 2

• TEXT location counter

now is 35

• If another label were

defined at this point, it

would mark a spot

in TEXT at offset 35

40

From Assembler Pass 1 to Pass 2

End of Pass 1
• Assembler has (partially) created Symbol Table

• So assembler now knows which location each label denotes

Beginning of Pass 2
• Assembler resets all section location counters…

41

Assembler Data Structures (8)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 0)

• (Same)

TEXT Section (location counter: 0)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 local 1

skip TEXT 26 local 2

Location counters

reset to 0

42

Assembler Pass 2

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler does nothing

Assembler notes that

the current section is

RODATA

Assembler places

bytes in RODATA

section, and increments

location counter…

43

Assembler Data Structures (9)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

TEXT Section (location counter: 0)

• (Same)

Offset Contents (hex) Explanation

0 48 ASCII code for ‘H’

1 69 ASCII code for ‘i’

2 0A ASCII code for ‘\n’

3 00 ASCII code for null char

Location counter

incremented to 4

RODATA section

contains the bytes

comprising the string

44

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler updates

Symbol Table…

Assembler notes that

the current section is

TEXT

45

Assembler Data Structures (10)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 0)

• (Same)

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 global 1

skip TEXT 26 local 2

main is a

global label

46

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler does

nothing

Assembler generates

machine language

code in current

(TEXT) section…

47

Assembler Data Structures (11)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 1)

Offset Contents Explanation

0 55 pushl %ebp

01010101

This is a “pushl %ebp” instruction

48

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler generates

machine language

code in current

(TEXT) section…

49

Assembler Data Structures (12)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 3)

Offset Contents Explanation

… … …

1-2 89 E5 movl %esp,%ebp

10001001 11 100 101

This is a “movl” instruction whose source operand

is a register

The M field designates a register

The source register is ESP

The destination register is EBP

50

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler generates

machine language

code in current

(TEXT) section…

51

Assembler Data Structures (12)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 8)

Offset Contents Explanation

… … …

3-7 E8 ???????? call getchar

11101000 ????????????????????????????????

This is a “call” instruction with a 4-byte

immmediate operand

This is the displacement

• Assembler looks in Symbol

Table to find offset of getchar

• getchar is not in Symbol Table

• Assembler cannot compute

displacement that belongs

at offset 4

• So…

52

Assembler Data Structures (13)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 8)

• (Same)

• Assembler adds getchar

to Symbol Table

• Then…

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 global 1

skip TEXT 26 local 2

getchar ? ? global 3

53

Assembler Data Structures (14)

Symbol Table

• (Same)

Relocation Records

RODATA Section

(location counter: 4)

• (Same)

TEXT Section

(location counter: 8)

• (Same)

Assembler generates

a relocation record,

thus asking linker to

patch code
Section Offset Rel Type Seq#

TEXT 4 displacement 3

Dear Linker,

Please patch the TEXT section

at offset 4. Do a “displacement”
type of patch. The patch is with

respect to the label whose seq

number is 3 (i.e. getchar).

Sincerely,

Assembler

54

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler generates

machine language

code in current

(TEXT) section…

55

Assembler Data Structures (15)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 11)

Offset Contents Explanation

… … …

8-10 83 F8 41 cmpl %'A',%eax

10000011 11 111 000 01000001

This is some “l” instruction that has a 1 byte

immediate operand

The M field designates a register

This is a “cmp” instruction

The destination register is EAX

The immediate operand is ‘A’

56

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler generates

machine language

code in current

(TEXT) section…

57

Assembler Data Structures (16)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 13)

Offset Contents Explanation

… … …

11-12 75 0D jne skip

01110101 00001101

This is a jne instruction that has a 1 byte

immediate operand

The displacement between the destination

instr. and the next instr. is 13

• Assembler looks in

Symbol Table to find

offset of skip (26)

• Assembler subtracts

offset of next instruction

(13)

• Resulting displacement

is 13

58

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler generates

machine language

code in current

(TEXT) section…

59

Assembler Data Structures (16)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 18)

Offset Contents Explanation

… … …

13-17 68 ???????? pushl $msg

001101000 ????????????????????????????????

This is a pushl instruction with a 4 byte

immediate operand

This is the data to be pushed

• Assembler knows offset

of msg (0) within RODATA

section

• But assembler does not

know location RODATA

section

• So assembler does not

know location of msg

• So…

60

Assembler Data Structures (17)

Symbol Table

• (Same)

Relocation Records

RODATA Section

(location counter: 4)

• (Same)

TEXT Section

(location counter: 18)

• (Same)

Assembler generates

a relocation record,

thus asking linker to

patch codeSection Offset Rel Type Seq#

… … … …

TEXT 14 absolute 0

Dear Linker,

Please patch the TEXT section

at offset 14. Do an “absolute”
type of patch. The patch is with

respect to the label whose seq

number is 0 (i.e. msg).

Sincerely,

Assembler

61

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler generates

machine language

code in current

(TEXT) section…

62

Assembler Data Structures (18)

Symbol Table

• (Same)

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 23)

Offset Contents Explanation

… … …

18-22 E8 ???????? call printf

11101000 ????????????????????????????????

This is a “call” instruction with a 4-byte

immmediate operand

This is the displacement

• Assembler looks in Symbol

Table to find offset of printf

• printf is not in Symbol Table

• Assembler cannot compute

displacement that belongs

at offset 19

• So…

63

Assembler Data Structures (19)

Symbol Table

Relocation Records

• (Same)

RODATA Section (location counter: 4)

• (Same)

TEXT Section (location counter: 23)

• (Same)

• Assembler adds printf

to Symbol Table

• Then…

Label Section Offset Local? Seq#

msg RODATA 0 local 0

main TEXT 0 global 1

skip TEXT 26 local 2

getchar ? ? global 3

printf ? ? global 4

64

Assembler Data Structures (20)

Symbol Table

• (Same)

Relocation Records

RODATA Section

(location counter: 4)

• (Same)

TEXT Section

(location counter: 8)

• (Same)

Assembler generates

a relocation record,

thus asking linker to

patch code
Section Offset Rel Type Seq#

… … … …

TEXT 19 displacement 4

Dear Linker,

Please patch the TEXT section

at offset 19. Do a “displacement”
type of patch. The patch is with

respect to the label whose seq

number is 4 (i.e. printf).

Sincerely,

Assembler

65

Assembler Pass 2 (cont.)

.section ".rodata"

msg:

.string "Hi\n"

.section ".text"

.globl main

main:

pushl %ebp

movl %esp, %ebp

call getchar

cmpl $'A', %eax

jne skip

pushl $msg

call printf

addl $4, %esp

skip:

movl $0, %eax

movl %ebp, %esp

popl %ebp

ret

Assembler generates

machine language

code in current

(TEXT) section…

Assembler ignores

66

Assembler Data Structures (21)

Symbol Table, Relocation Records, RODATA Section

• (Same)

TEXT Section (location counter: 31)

Offset Contents Explanation

… … …

23-25 83 C4 04 addl $4,%esp

10000011 11 000 100 00000100

This is some “l” instruction that has a 1 byte

immediate operand

The M field designates a register

This is an “add” instruction

The destination register is ESP

The immediate operand is 4

26-30 B8 00000000 movl $0,%eax

10111000 00000000000000000000000000000000

This is an instruction of the form “movl 4-byte-
immediate, %eax”

The immediate operand is 0

67

Assembler Data Structures (22)

Symbol Table, Relocation Records, RODATA Section

• (Same)

TEXT Section (location counter: 35)

Offset Contents Explanation

… … …

31-32 89 EC movl %ebp,%esp

10001001 11 101 100

This is a “movl” instruction whose source operand

is a register

The M field designates a register

The source register is EBP

The destination register is ESP

33 5D popl %ebp

01011101

This is a “popl %ebp” instruction

34 C3 ret

11000011

This is a “ret” instruction

Agenda

Machine Language

The Assembly Process

The Linking Process

68

69

From Assembler to Linker

Assembler writes its data structures to .o file

Linker:
• Reads .o file

• Write executable binary file

• Works in two phases: resolution and relocation

70

Linker Resolution

Resolution
• Linker resolves references

For this program, linker:
• Notes that Symbol Table contains undefined labels

• getchar and printf

• Fetches, from libc.a, machine language code defining getchar and

printf

• Adds that code to TEXT section

• (May add code to other sections too)

• Updates Symbol Table to note offsets of getchar and printf

• Adds column to Symbol Table to note addresses of all labels

71

Linker Relocation

Relocation
• Linker patches (“relocates”) code

• Linker traverses relocation records, patching code as specified

For this program

Section Offset Rel Type Seq#

TEXT 4 displacement 3

TEXT 14 absolute 0

TEXT 19 displacement 4

• Linker looks up offset of getchar

• Linker computes [offset of getchar] – 8

• Linker places difference in TEXT

section at offset 4

• Thus linker completes translation of
call getchar

72

Linker Relocation (cont.)

For this program

Section Offset Rel Type Seq#

TEXT 4 displacement 3

TEXT 14 absolute 0

TEXT 19 displacement 4

• Linker looks up addr of msg

• Linker places addr in TEXT

section at offset 14

• Thus linker completes translation of
pushl $msg

73

Linker Relocation (cont.)

For this program

Section Offset Rel Type Seq#

TEXT 4 displacement 3

TEXT 14 absolute 0

TEXT 19 displacement 4

• Linker looks up offset of printf

• Linker computes [offset of printf] – 23

• Linker places difference in TEXT

section at offset 19

• Thus linker completes translation of
call printf

74

Linker Finishes

Linker writes resulting TEXT, RODATA, DATA,

BSS sections to executable binary file

75

Summary

Assembler: reads assembly language file
• Pass 1: Generates Symbol Table

• Contains info about labels

• Pass 2: Uses Symbol Table to generate code

• TEXT, RODATA, DATA, BSS sections

• Relocation Records

• Writes object file

Linker: reads object files
• Resolution: Resolves references to make Symbol Table an code

complete

• Relocation: Uses Symbol Table and Relocation Records to patch

code

• Writes executable binary file

76

Appendix: Generating Machine Lang

Hint for Buffer Overrun assignment…

Given an assembly language instruction, how can

you find the machine language equivalent?

Option 1: Consult IA-32 reference manuals
• See course Web pages for links to the manuals

77

Appendix: Generating Machine Lang

Option 2:
• Compose an assembly language program that contains

the given assembly language instruction

• Then use gdb…

78

Appendix: Generating Machine Lang

Using gdb

$ gcc217 detecta.s –o detecta

$ gdb detecta

(gdb) x/12i main

0x80483b4 <main>: push %ebp

0x80483b5 <main+1>: mov %esp,%ebp

0x80483b7 <main+3>: call 0x8048298 <getchar@plt>

0x80483bc <main+8>: cmp $0x41,%eax

0x80483bf <main+11>: jne 0x80483ce <skip>

0x80483c1 <main+13>: push $0x80484b0

0x80483c6 <main+18>: call 0x80482c8 <printf@plt>

0x80483cb <main+23>: add $0x4,%esp

0x80483ce <skip>: mov $0x0,%eax

0x80483d3 <skip+5>: mov %ebp,%esp

0x80483d5 <skip+7>: pop %ebp

0x80483d6 <skip+8>: ret

(gdb) x/35b main

0x0 <main>: 0x55 0x89 0xe5 0xe8 0xfc 0xff 0xff 0xff

0x8 <main+8>: 0x83 0xf8 0x41 0x75 0x0d 0x68 0x00 0x00

0x10 <main+16>: 0x00 0x00 0xe8 0xfc 0xff 0xff 0xff 0x83

0x18 <main+24>: 0xc4 0x04 0xb8 0x00 0x00 0x00 0x00 0x89

0x20 <skip+6>: 0xec 0x5d 0xc3

(gdb) quit

Build program; run gdb from shell

Issue x/i command to examine

memory as instructions

Issue x/b command

to examine memory

as raw bytes

Match instructions to bytes

79

Appendix: Generating Machine Lang

Option 3:
• Compose an assembly language program that contains

the given assembly language instruction

• Then use objdump – a special purpose tool…

80

Appendix: Generating Machine Lang

Using objdump

$ gcc217 detecta.s –o detecta

$ objdump –d detecta

detecta: file format elf32-i386

…

Disassembly of section .text:

…

080483b4 <main>:

80483b4: 55 push %ebp

80483b5: 89 e5 mov %esp,%ebp

80483b7: e8 dc fe ff ff call 8048298 <getchar@plt>

80483bc: 83 f8 41 cmp $0x41,%eax

80483bf: 75 0d jne 80483ce <skip>

80483c1: 68 b0 84 04 08 push $0x80484b0

80483c6: e8 fd fe ff ff call 80482c8 <printf@plt>

80483cb: 83 c4 04 add $0x4,%esp

080483ce <skip>:

80483ce: b8 00 00 00 00 mov $0x0,%eax

80483d3: 89 ec mov %ebp,%esp

80483d5: 5d pop %ebp

80483d6: c3 ret

…

Build program; run objdump

Machine language

Assembly language

