
1

A Brief History

of Modularity

in Programming

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms (done)

• Modularity <-- we are here

• Building techniques & tools (done)

Debug
• Debugging techniques & tools (done)

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools

2

Goals of this Lecture

Help you learn:
• The history of modularity in computer programming

• A rational reconstruction of the development of programming styles,

with a focus on modularity

Why? Modularity is important
• Abstraction is a powerful (the only?) technique available for

understanding large, complex systems

• A power programmer knows how to find the abstractions in a large

program

• A power programmer knows how to convey a large program’s

abstractions via its modularity

And also… History is important
• Only by understanding the past can we fully appreciate the present

3

Agenda

Non-modular programming

Structured programming (SP)

Abstract object (AO) programming

Abstract data type (ADT) programming

4

Non-Modular Programming

Example languages
• Machine languages

• Assembly languages

• FORTRAN (Formula Translating System)

• BASIC (Beginners All-Purpose Symbolic Instruction Code)

5

Non-Modular Example

Example program
• Dr. Dondero’s first computer program

• 1971

• Teletype terminal

• Survived on paper

Functionality
• Help fellow algebra students learn how to expand polynomials

• Name: POLLY.BAS

Design
• BASIC language

• Don’t be concerned with details…

6

Non-Modular Example

POLLY.BAS

7

5 PRINT "IF YOU NEED INSTRUCTIONS TYPE 0."; (1)

7 INPUT X (2)

8 IF X=0 THEN 10 (3)

9 IF X#0 THEN 60

10 PRINT "HELLO! THIS PROGRAM IS DESIGNED TO GIVE YOU PRACTICE" (4)

11 PRINT "IN EXPANDING, THROUGH THE USE OF THE DISTRIBUTIVE" (5)

12 PRINT "PROPERTY. IT WILL ALSO HELP YOU TO OVERCOME THE" (6)

13 PRINT "FRESHMAN MISTAKE. PLEASE RESPOND TO EACH QUESTION" (7)

14 PRINT "BY TYPING THE NUMBER OF THE ANSWER CORESPONDING TO" (8)

15 PRINT "THAT QUESTION." (9)

27 PRINT (10)

28 PRINT (11)

29 PRINT (12)

30 PRINT TAB(21)"LIST OF ANSWERS" (13)

40 PRINT "**" (14)

50 PRINT TAB(1)"1. -4A^2 - 2A^2 + 2A^2B"; (15)

51 PRINT TAB(36)"4. -4A^2 + 2A^2 + 2A^2B" (16)

52 PRINT TAB(1)"2. -4A^2 -2A^2 -2A^2B"; (17)

53 PRINT TAB(36)"5. 4A^2 - 2A^2 -2A^2B" (18)

54 PRINT TAB(1)"3. -A^2 - A - AB"; (19)

55 PRINT TAB(36)"6. -2A^2 + 2a + 2AB" (20)

Non-Modular Example

POLLY.BAS (cont.)

8

56 PRINT (21)

57 PRINT (22)

58 PRINT (23)

60 PRINT "OK! HERE WE GO!!!" (24)

61 PRINT (25)

62 PRINT (26)

63 PRINT (27)

70 PRINT "EXPAND:"; (28)

71 GOSUB 8000 (29)

72 GOTO 90 (32)

73 GOSUB 8010 (54 end trace)

74 GOTO 141

75 GOSUB 8020

76 GOTO 170

77 GOSUB 8030

78 GOTO 200

79 GOSUB 8040

80 GOTO 300

81 GOSUB 8050

82 GOTO 400

90 PRINT "WHAT IS YOUR ANSWER? "; (33)

100 INPUT A (34) (43)

110 IF A=1 THEN 550 (35) (44)

115 IF A=2 THEN 550 (45)

120 IF A=3 THEN 780 (46)

125 IF A=4 THEN 550

130 IF A=5 THEN 550

135 IF A=6 THEN 550

140 IF A#6 THEN 9990

141 PRINT "WHAT IS YOUR ANSWER? ";

150 INPUT B

155 IF B=1 THEN 580

156 IF B=2 THEN 580

158 IF B=3 THEN 580

160 IF B=4 THEN 580

162 IF B=5 THEN 580

164 IF B=6 THEN 800

166 IF B#6 THEN 9990

Non-Modular Example

POLLY.BAS (cont.)

9

170 PRINT "WHAT WILL IT BE THIS TIME? ";

175 INPUT C

178 IF C=1 THEN 620

180 IF C=2 THEN 820

182 IF C=3 THEN 620

184 IF C=4 THEN 620

186 IF C=5 THEN 620

188 IF C=6 THEN 620

190 IF C#6 THEN 9990

200 PRINT "WHAT IS YOUR GUESS? ";

210 INPUT D

214 IF D=1 THEN 660

216 IF D=2 THEN 660

218 IF D=3 THEN 660

220 IF D=4 THEN 840

222 IF D=5 THEN 660

224 IF D=6 THEN 660

226 IF D#6 THEN 9990

300 PRINT "WHAT IS YOUR ANSWER? ";

310 INPUT E

314 IF E=1 THEN 860

316 IF E=2 THEN 700

318 IF E=3 THEN 700

320 IF E=4 THEN 700

322 IF E=5 THEN 700

324 IF E=6 THEN 700

326 IF E#6 THEN 9990

400 PRINT "WHAT WILL IT BE? ";

410 INPUT F

414 IF F=1 THEN 740

416 IF F=2 THEN 740

418 IF F=3 THEN 740

420 IF F=4 THEN 740

422 IF F=5 THEN 880

424 IF F=6 THEN 740

426 IF F#6 THEN 9990

Non-Modular Example

POLLY.BAS (cont.)

10

550 GOSUB 9000 (36)

570 GOTO 100 (42)

580 GOSUB 9000

600 GOTO 150

620 GOSUB 9000

640 GOTO 175

660 GOSUB 9000

680 GOTO 210

700 GOSUB 9000

720 GOTO 310

740 GOSUB 9000

760 GOTO 410

780 GOSUB 9010 (47)

785 GOSUB 9020 (50)

790 GOTO 73 (53)

800 GOSUB 9010

805 GOSUB 9020

810 GOTO 75

820 GOSUB 9010

825 GOSUB 9020

830 GOTO 77

840 GOSUB 9010

845 GOSUB 9020

850 GOTO 79

860 GOSUB 9010

865 GOSUB 9020

870 GOTO 81

880 GOSUB 9010

890 GOTO 9998

8000 PRINT "-A(A + 1 + B)" (30)

8001 RETURN (31)

8010 PRINT "-2A(A - 1 - B)"

8011 RETURN

8020 PRINT "-2A(2A + A + AB)"

8021 RETURN

8030 PRINT "-2A(2A - A - AB)"

8031 RETURN

8040 PRINT "-(4A^2 + 2A^2 -2A^2B)"

8041 RETURN

8050 PRINT "-A(-4A + 2A + 2AB)"

8051 RETURN

9000 PRINT "YOUR ANSWER IS INCORRECT." (37)

9005 PRINT "LOOK CAREFULLY AT THE SAME PROBLEM AND GIVE" (38)

9006 PRINT "ANOTHER ANSWER." (39)

9007 PRINT "WHAT WILL IT BE? "; (40)

9008 RETURN (41)

9010 PRINT "YOUR ANSWER IS CORRECT." (48)

9015 RETURN (49)

9020 PRINT "NOW TRY THIS ONE.” (51)

9030 RETURN (52)

9990 PRINT "THAT'S NOT A REASONABLE ANSWER."

9991 PRINT "COME BACK WHEN YOU GET SERIOUS."

9992 GOTO 9999

9998 PRINT "SORRY, THIS IS THE END OF THE PROGRAM."

9999 END

Toward SP

What’s wrong?
• From programmer’s viewpoint?

Think about
• Flow of control

11

Toward SP (Bőhm & Jacopini)

Bőhm and Jacopini

Any algorithm can be expressed

as the nesting of only 3 control

structures: sequence, selection,

repetition

12

Corrado Bőhm
Corrado Bőhm and Guiseppe Jacopini.

"Flow diagrams, Turing machines and languages

with only two formation rules."

Communications of the ACM 9 (May 1966),

366-371.

Toward SP (Bőhm & Jacopini)

13

statement1

statement2
statement1

condition

statement2

TRUE FALSE

statement

condition
TRUE FALSE

Sequence Selection Repetition

Toward SP (Dijkstra)

14

Edsger

Dijkstra

Edsger Dijkstra.

"Go To Statement Considered Harmful."

Communications of the ACM, Vol. 11,

No. 3, March 1968, pp. 147-148.

Toward SP (Dijkstra)

Paraphrasing (quotes in Appendix 1) …

A program
• Is a static entity

• Has no time dimension

A process
• Is a program in execution

• Is a dynamic entity

• Has a time dimension

• Can be understood only in terms of its time dimension

People understand static things better than they understand

dynamic things

So the static structure of a program should be similar to its

dynamic structure 15

Toward SP (Dijkstra)

Or, in other words…

Suppose:
• We have program written on paper 1

• Each time computer executes a statement, we write that statement

on paper 2

Then consider the correspondence between paper 1 and

paper 2
• Conditionals interfere, but only slightly

• Function calls interfere

• Iterations interfere

Nevertheless, for the sake of clarity...

16

Toward SP (Dijkstra)

Paper 2 should be similar to paper 1
• The dynamic rep of the program should be similar to the static rep

of the program

And ...
• If the static rep of the program contains goto statements, then paper

2 will be dissimilar to paper 1

So avoid goto statements

17

Toward SP

Bőhm & Jacopini:
• Any program can be expressed as the nesting of only 3 control

structures

Bőhm & Jacopini + Dijkstra
• Any program should be expressed as the nesting of only 3 control

structures

18

Agenda

Non-modular programming

Structured programming (SP)

Abstract object (AO) programming

Abstract data type (ADT) programming

19

Structured Programming

Key ideas:
• Programming using only the nesting of the 3 elementary control

structures: sequence, selection, iteration

• (Arguably) occasional exceptions are OK

• Define functions/procedures/subroutines liberally

Example languages:
• Pascal

• C

Example program…
• (Don’t be concerned with details)

20

SP Example

rev.c

Functionality
• Read numbers (doubles) from stdin until end-of-file

• Write to stdout in reverse order

Design
• Use a stack (LIFO data structure) of doubles

• Represent stack as an array

• To keep things simple…

• Assume max stack size is 100

• (See precept examples for more realistic implementations)

21

SP Example

rev.c

22

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

enum {MAX_STACK_ITEMS = 100}; /* Arbitrary */

int push(double *stack, int *top, double d)

{ assert(stack != NULL);

assert(top != NULL);

if (*top >= MAX_STACK_ITEMS)

return 0;

stack[*top] = d;

(*top)++;

return 1;

}

double pop(double *stack, int *top)

{ assert(stack != NULL);

assert(top != NULL);

assert(*top > 0);

(*top)--;

return stack[*top];

}

SP Example

rev.c (cont.)

23

int main(void)

{ double stack[MAX_STACK_ITEMS];

int top = 0;

double d;

while (scanf("%lf", &d) == 1)

if (! push(stack, &top, d))

return EXIT_FAILURE;

while (top > 0)

printf("%g\n", pop(stack, &top));

return 0;

}

Toward AO Programming

What's wrong?
• From programmer's viewpoint?

Think about:
• Design decisions

• Modularity

24

Toward AO Programming

25

David

Parnas

David Parnas

"On the Criteria to be Used in Decomposing

Systems into Modules."

Communications of the ACM, Vol. 15, No. 12,

December 1972. pp. 1053 – 1058.

Agenda

Non-modular programming

Structured programming

Abstract object (AO) programming

Abstract data type (ADT) programming

26

Abstract Object Programming

Key ideas:
• Design modules to encapsulate important design decisions

• Design modules to hide info from clients

Example languages
• Ada

• C (with some discipline)

Example program…

27

AO Programming Example

stack.h (interface)

28

#ifndef STACK_INCLUDED

#define STACK_INCLUDED

int Stack_init(void);

void Stack_free(void);

int Stack_push(double d);

double Stack_pop(void);

int Stack_isEmpty(void);

#endif

AO Programming Example

rev.c (client)

29

#include "stack.h"

#include <stdio.h>

#include <stdlib.h>

int main(void)

{ double d;

Stack_init();

while (scanf("%lf", &d) == 1)

Stack_push(d);

while (! Stack_isEmpty())

printf("%g\n", Stack_pop());

Stack_free();

return 0;

}

For simplicity,

error handling

code is omitted

AO Programming Example

stack.c (implementation)

30

#include "stack.h"

#include <assert.h>

enum {MAX_STACK_ITEMS = 100};

static double stack[MAX_STACK_ITEMS];

static int top;

static int initialized = 0;

int Stack_init(void)

{ assert(! initialized);

top = 0;

initialized = 1;

return 1;

}

void Stack_free(void)

{ assert(initialized);

initialized = 0;

}

int Stack_push(double d)

{ assert(initialized);

if (top >= MAX_STACK_ITEMS)

return 0;

stack[top] = d;

top++;

return 1;

}

double Stack_pop(void)

{ assert(initialized);

assert(top > 0);

top--;

return stack[top];

}

int Stack_isEmpty(void)

{ assert(initialized);

return top == 0;

}

AO Programming Example

Notes:
• One Stack object

• The Stack object is abstract

• Major design decision (implementation of Stack as array) is

hidden from client

• Client doesn’t know Stack implementation

• Change Stack implementation => need not change client

• Object state is implemented using global variables

• Global variables are static => clients cannot access them

directly

31

Toward ADT Programming

What’s wrong?
• From programmer’s viewpoint?

Think about
• Flexibility

32

Toward ADT Programming

33

Barbara

Liskov

Toward ADT Programming

34

"An abstract data type defines a class of

abstract objects which is completely characterized

by the operations available on those objects. This

means that an abstract data type can be defined by

defining the characterizing operations for that

type."

Barbara Liskov and S. Zilles.

"Programming with Abstract Data Types."

ACM SIGPLAN Conference on Very

High Level Languages. April 1974.

Agenda

Non-modular programming

Structured programming

Abstract object (AO) programming

Abstract data type (ADT) programming

35

ADT Programming

Key ideas:
• A module should be abstract

• As in AO programming

• A module can (and often should) be a data type!!!

• Data type consists of data and operators applied to those data

• Program can create as many objects of that type as necessary

Example languages
• CLU (ALGOL, with clusters)

• C++, Objective-C, C#, Java, Python

• C (with some discipline)

Example program…

36

ADT Programming Example

stack.h (interface)

37

#ifndef STACK_INCLUDED

#define STACK_INCLUDED

enum {MAX_STACK_ITEMS = 100};

struct Stack

{ double items[MAX_STACK_ITEMS];

int top;

};

struct Stack *Stack_new(void);

void Stack_free(struct Stack *stack);

int Stack_push(struct Stack *stack, double d);

double Stack_pop(struct Stack *stack);

int Stack_isEmpty(struct Stack *stack);

#endif

ADT Programming Example

rev.c (client)

38

#include <stdio.h>

#include <stdlib.h>

#include "stack.h"

int main(void)

{ double d;

struct Stack *stack1;

stack1 = Stack_new();

while (scanf("%lf", &d) == 1)

Stack_push(stack1, d);

while (! Stack_isEmpty(stack1))

printf("%g\n", Stack_pop(stack1));

Stack_free(stack1);

return 0;

}

For simplicity,

error handling

code is omitted

ADT Programming Example

stack.c (implementation)

39

#include <stdlib.h>

#include <assert.h>

#include "stack.h"

struct Stack *Stack_new(void)

{ struct Stack *stack;

stack = (struct Stack*)malloc(sizeof(struct Stack));

if (stack == NULL)

return NULL;

stack->top = 0;

return stack;

}

void Stack_free(struct Stack *stack)

{ assert(stack != NULL);

free(stack);

}

ADT Programming Example

stack.c (cont.)

40

int Stack_push(struct Stack *stack, double d)

{ assert(stack != NULL);

if (stack->top >= MAX_STACK_ITEMS)

return 0;

stack->items[stack->top] = d;

(stack->top)++;

return 1;

}

double Stack_pop(struct Stack *stack)

{ assert(stack != NULL);

assert(stack->top > 0);

stack->top--;

return stack->items[stack->top];

}

int Stack_isEmpty(struct Stack *stack)

{ assert(stack != NULL);

return stack->top == 0;

}

ADT Programming

What’s wrong?
• From programmer’s viewpoint?

Think about
• Encapsulation

See next lecture!

41

Summary

A rational reconstruction of the history of modularity in

computer programming
• Non-modular programming

• Structured programming (SP)

• Abstract object (AO) programming

• Abstract data type (ADT) programming

More recently:
• Object-oriented programming

• Smalltalk, Objective-C, C++, C#, Java

• Logic-based programming

• Prolog

• Functional programming

• LISP, OCaml

• …

42

Appendix 1: Quotations

Toward SP (Dijkstra)

44

Edsger

Dijkstra

Edsger Dijkstra.

"Go To Statement Considered Harmful."

Communications of the ACM, Vol. 11,

No. 3, March 1968, pp. 147-148.

Toward SP (Dijkstra)

45

"My first remark is that, although the programmer's

activity ends when he has constructed a correct program,

the process taking place under control of his program is

the true subject matter of his activity, for it is this process

that has to accomplish the desired effect; it is this process

that in its dynamic behavior has to satisfy the desired

specifications. Yet, once the program has been made, the

'making' of the corresponding process is delegated to the

machine."

Edsger Dijkstra.

"Go To Statement Considered Harmful."

Communications of the ACM, Vol. 11,

No. 3, March 1968, pp. 147-148.

Toward SP (Dijkstra)

46

"My second remark is that our intellectual powers are rather

geared to master static relations and that our powers to

visualize processes evolving in time are relatively poorly

developed. For that reason we should do (as wise

programmers aware of our limitations) our utmost to shorten

the conceptual gap between the static program and the

dynamic process, to make the correspondence between

the program (spread out in text space) and the process

(spread out in time) as trivial as possible."

Edsger Dijkstra.

"Go To Statement Considered Harmful."

Communications of the ACM, Vol. 11,

No. 3, March 1968, pp. 147-148.

Use of the goto statement makes the correspondence

between the program and the process non-trivial

Toward AO Programming

47

David

Parnas

Toward AO Programming

48

"In the first decomposition the criterion

used was to make each major step in the

processing a module. One might say that

to get the first decomposition one makes

a flowchart. This is the most common

approach to decomposition or

modularization."

David Parnas

"On the Criteria to be Used in Decomposing

Systems into Modules."

Communications of the ACM, Vol. 15, No. 12,

December 1972. pp. 1053 – 1058.

Toward AO Programming

49

"The second decomposition was made

using 'information hiding' as a criterion.

The modules no longer correspond to

steps in the processing... Every module

in the second decomposition is

characterized by its knowledge of a

design decision which it hides from all

others. Its interface or definition was

chosen to reveal as little as possible

about its inner workings."

David Parnas

"On the Criteria to be Used in Decomposing

Systems into Modules."

Communications of the ACM, Vol. 15, No. 12,

December 1972. pp. 1053 – 1058.

Toward ADT Programming

50

Barbara

Liskov

Toward ADT Programming

51

"We believe that the above concept captures the

fundamental properties of abstract objects. When a

programmer makes use of an abstract data object, he

is concerned only with the behavior which that object

exhibits but not with any details of how that

behavior is achieved by means of an implementation."

Barbara Liskov and S. Zilles.

"Programming with Abstract Data Types."

ACM SIGPLAN Conference on Very

High Level Languages. April 1974.

Toward ADT Programming

52

"Abstract types are intended to be very much

like the built-in types provided by a programming

language. The user of a built-in type, such as

integer or integer array, is only concerned with

creating objects of that type and then performing

operations on them. He is not (usually) concerned

with how the data objects are represented, and he

views the operations on the objects as indivisible

and atomic when in fact several machine instructions

may be required to perform them."

Barbara Liskov and S. Zilles.

"Programming with Abstract Data Types."

ACM SIGPLAN Conference on Very

High Level Languages. April 1974.

Appendix 2: SP Example 2

polly.c

53

#include <stdio.h>

#include <stdlib.h>

static void printInstructions(void)

{ printf("HELLO! THIS PROGRAM IS DESIGNED TO GIVE YOU PRACTICE\n");

printf("IN EXPANDING, THROUGH THE USE OF THE DISTRIBUTIVE\n");

printf("PROPERTY. IT WILL ALSO HELP YOU TO OVERCOME THE\n");

printf("FRESHMAN MISTAKE. PLEASE RESPOND TO EACH QUESTION\n");

printf("BY TYPING THE NUMBER OF THE ANSWER CORESPONDING TO\n");

printf("THAT QUESTION.\n");

printf("\n\n\n");

printf(" LIST OF ANSWERS\n");

printf("****************************");

printf("********************************\n");

printf("1. -4A^2 - 2A^2 + 2A^2B 4. -4A^2 + 2A^2 + 2A^2B\n");

printf("2. -4A^2 -2A^2 -2A^2B 5. 4A^2 - 2A^2 -2A^2B\n");

printf("3. -A^2 - A - AB 6. -2A^2 + 2a + 2AB\n");

printf("\n\n\n");

}

SP Example 2

polly.c (cont.)

54

static void handleSillyAnswer(void)

{ printf("THAT'S NOT A REASONABLE ANSWER.\n");

printf("COME BACK WHEN YOU GET SERIOUS.\n");

exit(EXIT_FAILURE);

}

static void handleWrongAnswer(void)

{ printf("YOUR ANSWER IS INCORRECT.\n");

printf("LOOK CAREFULLY AT THE SAME PROBLEM AND GIVE\n");

printf("ANOTHER ANSWER.\n");

printf("WHAT WILL IT BE? ");

}

SP Example 2

polly.c (cont.)

55

static int readAnswer(int minAnswer, int maxAnswer)

{ int answer;

if (scanf("%d", &answer) != 1)

handleSillyAnswer();

if ((answer < minAnswer) || (answer > maxAnswer))

handleSillyAnswer();

return answer;

}

static void readCorrectAnswer(int correctAnswer)

{ enum {MIN_ANSWER = 1, MAX_ANSWER = 6};

int answer;

answer = readAnswer(MIN_ANSWER, MAX_ANSWER);

while (answer != correctAnswer)

{ handleWrongAnswer();

answer = readAnswer(MIN_ANSWER, MAX_ANSWER);

}

printf("YOUR ANSWER IS CORRECT.\n");

}

SP Example 2

polly.c (cont.)

56

int main(void)

{ int answer;

printf("IF YOU NEED INSTRUCTIONS TYPE 0. OTHERWISE TYPE 1.\n");

answer = readAnswer(0, 1);

if (answer == 0)

printInstructions();

printf("OK! HERE WE GO!!!\n");

printf("\n\n");

printf("EXPAND:\n");

printf("-A(A + 1 + B)\n");

printf("WHAT IS YOUR ANSWER? ");

readCorrectAnswer(3);

printf("NOW TRY THIS ONE\n");

printf("-2A(A - 1 - B)\n");

printf("WHAT IS YOUR ANSWER? ");

readCorrectAnswer(6);

SP Example 2

polly.c (cont.)

57

printf("NOW TRY THIS ONE\n");

printf("-2A(2A + A + AB)\n");

printf("WHAT WILL IT BE THIS TIME? ");

readCorrectAnswer(2);

printf("NOW TRY THIS ONE\n");

printf("-2A(2A - A - AB)\n");

printf("WHAT IS YOUR GUESS? ");

readCorrectAnswer(4);

printf("NOW TRY THIS ONE\n");

printf("-(4A^2 + 2A^2 -2A^2B)\n");

printf("WHAT IS YOUR ANSWER? ");

readCorrectAnswer(1);

printf("NOW TRY THIS ONE\n");

printf("-A(-4A + 2A + 2AB)\n");

printf("WHAT WILL IT BE? ");

readCorrectAnswer(5);

printf("SORRY, THIS IS THE END OF THE PROGRAM.\n");

return 0;

}

