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Data Structures
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Motivating Quotation

“Every program depends on algorithms and data 

structures, but few programs depend on the 

invention of brand new ones.”

-- Kernighan & Pike



“Programming in the Large” Steps

Design & Implement
• Program & programming style  (done)

• Common data structures and algorithms  <-- we are here

• Modularity

• Building techniques & tools  (done)

Debug
• Debugging techniques & tools  (done)

Test
• Testing techniques  (done)

Maintain
• Performance improvement techniques & tools
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Goals of this Lecture

Help you learn (or refresh your memory) about:
• Common data structures: linked lists and hash tables

Why?  Deep motivation:
• Common data structures serve as “high level building blocks”

• A power programmer:

• Rarely creates programs from scratch

• Often creates programs using high level building blocks

Why?  Shallow motivation:
• Provide background pertinent to Assignment 3

• … esp. for those who have not taken COS 226
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Common Task

Maintain a collection of key/value pairs
• Each key is a string; each value is an int

• Unknown number of key-value pairs

Examples
• (student name, grade)

• (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)

• (baseball player, number)

• (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)

• (variable name, value)

• (“maxLength”, 2000), (“i”, 7), (“j”, -10)
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Agenda

Linked lists

Hash tables

Hash table issues
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Linked List Data Structure

struct Node

{  const char *key;

int value;

struct Node *next;

};

struct List

{  struct Node *first;

};
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Linked List Algorithms

Create
• Allocate List structure; set first to NULL

• Performance:  O(1) => fast 

Add (no check for duplicate key required)
• Insert new node containing key/value pair at front of list

• Performance:  O(1) => fast

Add (check for duplicate key required)
• Traverse list to check for node with duplicate key

• Insert new node containing key/value pair into list

• Performance:  O(n) => slow
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Linked List Algorithms

Search
• Traverse the list, looking for given key

• Stop when key found, or reach end

• Performance:  O(n) => slow

Free
• Free Node structures while traversing

• Free List structure

• Performance:  O(n) => slow
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Agenda

Linked lists

Hash tables

Hash table issues
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Hash Table Data Structure

enum {BUCKET_COUNT = 1024};

struct Binding

{  const char *key;

int value;

struct Binding *next;

};

struct Table

{  struct Binding *buckets[BUCKET_COUNT];

};

NULL
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Hash Table Data Structure

Hash function maps given key to an integer

Mod integer by BUCKET_COUNT to determine proper bucket 
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Hash Table Example

Example: BUCKET_COUNT = 7

Add (if not already present) bindings with these keys:
• the, cat, in, the, hat
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Hash Table Example (cont.)

First key:  “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found
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Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]
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Hash Table Example (cont.)

Second key:  “cat”
• hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found
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Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]
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Hash Table Example (cont.)

Third key:  “in”
• hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found
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Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]
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Hash Table Example (cont.)

Fourth word:  “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!

• Don’t change hash table
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Hash Table Example (cont.)

Fifth key:  “hat”
• hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found
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Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]

• At front or back?  Doesn’t matter

• Inserting at the front is easier, so add at the front
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Hash Table Algorithms

Create
• Allocate Table structure; set each bucket to NULL

• Performance:  O(1) => fast

Add
• Hash the given key

• Mod by BUCKET_COUNT to determine proper bucket

• Traverse proper bucket to make sure no duplicate key

• Insert new binding containing key/value pair into proper bucket

• Performance:  O(1) => fast

23

Is the add 

performance 

always fast?



Hash Table Algorithms

Search
• Hash the given key

• Mod by BUCKET_COUNT to determine proper bucket

• Traverse proper bucket, looking for binding with given key

• Stop when key found, or reach end

• Performance:  O(1) => fast

Free
• Traverse each bucket, freeing bindings

• Free Table structure

• Performance:  O(n) => slow
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Agenda

Linked lists

Hash tables

Hash table issues
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How Many Buckets?

Many!
• Too few => large buckets => slow add, slow search

But not too many!
• Too many => memory is wasted

This is OK:
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What Hash Function?

Should distribute bindings across the buckets well
• Distribute bindings over the range 0, 1, …, BUCKET_COUNT-1

• Distribute bindings evenly to avoid very long buckets

This is not so good:
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How to Hash Strings?

Simple hash schemes don’t distribute the keys evenly 

enough
• Number of characters, mod BUCKET_COUNT

• Sum the numeric codes of all characters, mod BUCKET_COUNT

• …

A reasonably good hash function:
• Weighted sum of characters si in the string s

•(Σ aisi) mod BUCKET_COUNT

• Best if a and BUCKET_COUNT are relatively prime

• E.g., a = 65599, BUCKET_COUNT = 1024
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How to Hash Strings?

Potentially expensive to compute Σ aisi

So let’s do some algebra
• (by example, for string s of length 5, a=65599):

h = Σ65599i*si

h = 655990*s0 + 655991*s1 + 655992*s2 + 655993*s3 + 655994*s4

Direction of traversal of s doesn’t matter, so…

h = 655990*s4 + 655991*s3 + 655992*s2 + 655993*s1 + 655994*s0

h = 655994*s0 + 655993*s1 + 655992*s2 + 655991*s3 + 655990*s4

h = (((((s0) * 65599 + s1) * 65599 + s2) * 65599 + s3) * 65599) + s4
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How to Hash Strings?

Yielding this function

unsigned int hash(const char *s, int bucketCount)

{  int i;

unsigned int h = 0U;

for (i=0; s[i]!='\0'; i++)

h = h * 65599U + (unsigned int)s[i];

return h % bucketCount;

}
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How to Protect Keys?

Suppose Table_add() function contains this code:

void Table_add(struct Table *t, const char *key, int 

value)

{  …

struct Binding *p = 

(struct Binding*)malloc(sizeof(struct Binding));

p->key = key;

…

}
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How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);
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How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

strcpy(k, "Gehrig");

What happens if the 

client searches t for 

“Ruth”?  For Gehrig?
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How to Protect Keys?

Solution: Table_add() saves a defensive copy of the 

given key

void Table_add(struct Table *t, const char *key, int value)

{  …

struct Binding *p = 

(struct Binding*)malloc(sizeof(struct Binding));

p->key = (const char*)malloc(strlen(key) + 1);

strcpy((char*)p->key, key);

…

} Why add 1?
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How to Protect Keys?

Now consider same calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);
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How to Protect Keys?

Now consider same calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

strcpy(k, "Gehrig");
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Who Owns the Keys?

Then the hash table owns its keys
• That is, the hash table owns the memory in

which its keys reside

• Hash_free() function must free the memory

in which the key resides



Summary

Common data structures and associated algorithms
• Linked list

• (Maybe) fast add

• Slow search

• Hash table

• (Potentially) fast add

• (Potentially) fast search

• Very common

Hash table issues
• Hashing algorithms

• Defensive copies

• Key ownership
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