9. Scientific Computing

Applications of Scientific Computing

Science and engineering challenges.
- Fluid dynamics.
- Seismic surveys.
- Plasma dynamics.
- Ocean circulation.
- Electronic design.
- Pharmaceutical design.
- Human genome project.
- Vehicle crash simulation.
- Global climate simulation.
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Commercial applications.
- Web search.
- Financial modeling.
- Computer graphics.
- Digital audio and video.
- Natural language processing.
- Architecture walk-throughs.
- Medical diagnostics (MRI, CAT).

Common features.
- Problems tend to be continuous instead of discrete.
- Algorithms often need to scale to handle huge problems.

Representing Real Numbers

Challenge: use fixed size words to represent, e.g.,
- 2.1
- 0.0000000000000000000000000000000000345878778
- -1020455.000322
- 365090807000000000000000000000000.0

We appear to need:
- A sign bit
- An exponent, which might need to be negative
- A "significand" or "mantissa"
- AND a way to cram all this into 32 or 64 bits.

IEEE 754 representation.
- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float = 32 bits.
- Double precision: double = 64 bits.

Ex. Single precision representation of -0.453125.

```
1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 125
```

1/2 + 1/4 + 1/16 = 0.8125

```
-1 \times 2^{125} - 127 \times 1.8125 = -0.453125
```
Floating Point

Remark. Most real numbers are not representable, including \(\pi \) and 1/10.

Roundoff error. When result of calculation is not representable.

Consequence. Non-intuitive behavior for uninitiated.

```java
if (0.1 + 0.2 == 0.3) { // NO
if (0.1 + 0.3 == 0.4) { // YES
```

Financial computing. Calculate 9% sales tax on a 50¢ phone call.

Banker’s rounding. Round to nearest integer, to even integer if tie.

```java
double a1 = 1.14 * 75; // 85.499999999999999
```

```java
double a2 = Math.round(a1); // 85 // you lost 1¢
```

```java
double b1 = 1.09 * 50; // 54.50000000000001
```

```java
double b2 = Math.round(b1); // 55 // SEC violation (!)
```

Catastrophic Cancellation

A simple function.

\[
f(x) = \frac{1 - \cos x}{x^2}
\]

Goal. Plot \(f(x) \) for \(-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8}\).

Example. Evaluate \(f(x) \) for \(x = 1.1e-8 \).

- \(\cos(x) = 0.9999999999999889776975374834595763683319091796875 \)
 - nearest floating point value agrees with exact answer to 16 decimal places.

- \((1.0 - \cos(x)) = 1.1102e-16 \)
 - inaccurate estimate of exact answer (6.05 \cdot 10^{-17})

- \((1.0 - \cos(x)) / (x * x) = 0.9175396879728567 \)
 - 80% larger than exact answer! (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.
Numerical Catastrophes

Ariane 5 rocket. [June 4, 1996]
• 10 year, $7 billion ESA project exploded after launch.
• 64-bit float converted to 16 bit signed int.
• Unanticipated overflow.

Vancouver stock exchange. [November, 1983]
• Index undervalued by 44%.
• Recalculated index after each trade by adding change in price.
• 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]
• Failed to track scud; hit Army barracks, killed 28.
• Inaccuracy in measuring time in 1/10 of a second using 24 bit binary floating point.
• Accumulated error over 100 hrs. made scud untrackable.

Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

\[
\begin{align*}
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 3 x_1 + 15 x_2 &= 36
\end{align*}
\]

\[
A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}
\]

Fundamental problems in science and engineering.
• Chemical equilibrium.
• Linear and nonlinear optimization.
• Kirchoff’s current and voltage laws.
• Hooke’s law for finite element methods.
• Leontief’s model of economic equilibrium.
• Numerical solutions to differential equations.
• ...

Gaussian Elimination

Chemical Equilibrium

Ex. Combustion of propane.

\[x_2 C_3 H_8 + x_1 O_2 \Rightarrow x_4 CO_2 + x_3 H_2 O\]

Stoichiometric constraints.
• Carbon: \(3x_0 = x_2\).
• Hydrogen: \(8x_0 = 2x_3\).
• Oxygen: \(2x_1 = 2x_2 + x_3\).
• Normalize: \(x_0 = 1\).

\[C_3 H_8 + 5O_2 \Rightarrow 3CO_2 + 4H_2 O\]

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.
Kirchoff’s Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff’s current law.
- \(10 = 1x_0 + 25(x_0 - x_1) + 50(x_0 - x_2) \).
- \(0 = 25(x_1 - x_2) + 30x_1 + 1(x_1 - x_2) \).
- \(0 = 50(x_2 - x_0) + 1(x_2 - x_1) + 55x_2 \).

Solution. \(x_0 = 0.2449, x_1 = 0.1114, x_2 = 0.1166 \).

Gaussian Elimination

Gaussian elimination.
- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.
- Exchange row \(p \) and row \(q \).
- Add a multiple \(a \) of row \(p \) to row \(q \).

Key invariant. Row operations preserve solutions.

Upper Triangular System of Equations

Upper triangular system. \(a_{ij} = 0 \) for \(i > j \).

Back substitution. Solve by examining equations in reverse order.
- Equation 2: \(x_2 = 24/12 = 2 \).
- Equation 1: \(x_1 = 4 - x_2 = 2 \).
- Equation 0: \(x_0 = (2 - 4x_1 + 2x_2) / 2 = -1 \).

Gaussian Elimination: Row Operations

Elementary row operations.

\[
\begin{align*}
0x_0 + 1x_1 + 1x_2 &= 4 \\
2x_0 + 4x_1 - 2x_2 &= 2 \\
0x_0 + 3x_1 + 15x_2 &= 36 \\
\end{align*}
\]

(interchange row 0 and 1)

\[
\begin{align*}
2x_0 + 4x_1 - 2x_2 &= 2 \\
0x_0 + 1x_1 + 1x_2 &= 4 \\
0x_0 + 3x_1 + 15x_2 &= 36 \\
\end{align*}
\]

(subtract 3x row 1 from row 2)
Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot \(a_{pp} \).

\[
\begin{align*}
A & = \begin{bmatrix}
0 & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & *
\end{bmatrix} \\
\Rightarrow & \begin{bmatrix}
0 & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & *
\end{bmatrix}
\end{align*}
\]

for (int \(p = 0; p < N; p++ \)) {
 for (int \(i = p + 1; i < N; i++ \)) {
 b[i] -= \(\alpha \) * b[p];
 for (int \(j = p; j < N; j++ \))
 }
}

Gaussian Elimination Example

\[
\begin{align*}
1x_0 + 0x_1 + 1x_2 + 4x_3 &= 1 \\
2x_0 - 1x_1 + 1x_2 + 7x_3 &= 2 \\
-2x_0 + 1x_1 + 0x_2 - 6x_3 &= 3 \\
1x_0 + 1x_1 + 1x_2 + 9x_3 &= 4
\end{align*}
\]
Gaussian Elimination Example

\[
\begin{align*}
1x_0 + 0x_1 + 1x_2 + 4x_3 &= 1 \\
0x_0 + -1x_1 + -1x_2 + -1x_3 &= 0 \\
0x_0 + 0x_1 + 1x_2 + 1x_3 &= 5 \\
0x_0 + 0x_1 + -1x_2 + 4x_3 &= 3 \\
\end{align*}
\]

\[
\begin{align*}
x_3 &= 8/5 \\
x_2 &= 5 - x_3 \\
x_1 &= 0 - x_2 - x_3 \\
x_0 &= 1 - x_2 - 4x_3 \\
\end{align*}
\]

Gaussian Elimination Example

\[
\begin{align*}
1x_0 + 0x_1 + 1x_2 + 4x_3 &= 1 \\
0x_0 + -1x_1 + -1x_2 + -1x_3 &= 0 \\
0x_0 + 0x_1 + 1x_2 + 1x_3 &= 5 \\
0x_0 + 0x_1 + 0x_2 + 5x_3 &= 3 \\
\end{align*}
\]

Remark. Previous code fails spectacularly if pivot $a_{pp} = 0$.

Gaussian Elimination: Partial Pivoting

\[
\begin{align*}
1x_0 + 1x_1 + 0x_3 &= 1 \\
2x_0 + 2x_1 + -2x_3 &= -2 \\
0x_0 + 3x_1 + 15x_3 &= 33 \\
\end{align*}
\]

\[
\begin{align*}
1x_0 + 1x_1 + 0x_3 &= 1 \\
0x_0 + 0x_1 + -2x_3 &= -4 \\
0x_0 + 3x_1 + 15x_3 &= 33 \\
\end{align*}
\]

\[
\begin{align*}
1x_0 + 1x_1 + 0x_3 &= 1 \\
0x_0 + 0x_1 + -2x_3 &= -4 \\
0x_0 + Nan x_1 + Inf x_3 &= Inf \\
\end{align*}
\]
Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

```java
// find pivot row
int max = p;
for (int i = p + 1; i < N; i++)
    if (Math.abs(A[i][p]) > Math.abs(A[max][p])) max = i;
// swap rows p and max
```

Q. What if pivot $a_{pp} = 0$ while partial pivoting?
A. System has no solutions or infinitely many solutions.

Stability and Conditioning

Numerically Unstable Algorithms

Stability. Algorithm $f_1(x)$ for computing $f(x)$ is numerically stable if $f_1(x) = f(x+\varepsilon)$ for some small perturbation ε.

```
public static double f1(double x) {
    return (1.0 - Math.cos(x)) / (x * x);
}
```

Ex 1. Numerically unstable way to compute $f(x) = \frac{1 - \cos x}{x^2}$

1. $f_1(1.1e-8) = 0.9175$.
 - The true value is $1/2$.

2. $f(x) = \frac{2\sin^2(x/2)}{x^2}$ is a numerically stable formula.
Numerically Unstable Algorithms

Stability. Algorithm $f_1(x)$ for computing $f(x)$ is numerically stable if $f_1(x) \approx f(x + \varepsilon)$ for some small perturbation ε.

Nearly the right answer to nearly the right problem.

Ex. 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

$$a = 10^{-17}$$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>x_0</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>no pivoting</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>partial pivoting</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>exact</td>
<td>$\frac{1}{26} \approx 1$</td>
<td>$\frac{13}{26} \approx 1$</td>
</tr>
</tbody>
</table>

Theorem. Partial pivoting improves numerical stability.

Numerically Solving an Initial Value ODE

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

$$\frac{dx}{dt} = -10(x \cdot y)$$

$$\frac{dy}{dt} = -xz + 28x - y$$

$$\frac{dz}{dt} = xy - \frac{8}{3} z$$

$x = \text{fluid flow velocity}$

$y = \nabla \text{temperature between ascending and descending currents}$

$z = \text{distortion of vertical temperature profile from linearity}$

Solution. No closed form solution for $x(t)$, $y(t)$, $z(t)$.

Approach. Numerically solve ODE.
Euler's Method

Euler's method. [to numerically solve initial value ODE]
• Choose \(\Delta t \) sufficiently small.
• Approximate function at time \(t \) by tangent line at \(t \).
• Estimate value of function at time \(t + \Delta t \) according to tangent line.
• Increment time to \(t + \Delta t \).
• Repeat.

Advanced methods. Use less computation to achieve desired accuracy.
• 4th order Runge-Kutta: evaluate slope four times per step.
• Variable time step: automatically adjust timescale \(\Delta t \).
• See COS 323.

Euler's Method

\[
\begin{align*}
x_{t+\Delta t} &= x_t + \Delta t \frac{dx}{dt}(x_t, y_t, z_t) \\
y_{t+\Delta t} &= y_t + \Delta t \frac{dy}{dt}(x_t, y_t, z_t) \\
z_{t+\Delta t} &= z_t + \Delta t \frac{dz}{dt}(x_t, y_t, z_t)
\end{align*}
\]

Lorenz Attractor: Java Implementation

```java
public class Lorenz {
    public static double dx(double x, double y, double z) {
        return -10*(x - y);  
    }
    public static double dy(double x, double y, double z) {
        return -x*z + 28*x - y;  
    }
    public static double dz(double x, double y, double z) {
        return x*y - (8/3)*z;  
    }
    public static void main(String[] args) {
        double x = 0.0, y = 20.0, z = 25.0;
        double dt = 0.005;
        StdDraw.setscale(-25, 25);
        StdDraw.setyscale(0, 50);
        while (true) {
            double xnew = x + dt * dx(x, y, z);
            double ynew = y + dt * dy(x, y, z);
            double znew = z + dt * dz(x, y, z);
            x = xnew; y = ynew; z = znew;
            StdDraw.point(x, z);
        }
    }
}
```

The Lorenz Attractor

% java Lorenz

The Lorenz Attractor

% java Lorenz
Butterfly Effect

Experiment.
- Initialize $y = 20.01$ instead of $y = 20$.
- Plot original trajectory in blue, perturbed one in magenta.
- What happens?

Ill-conditioning.
- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

Predictability: Does the Flap of a Butterfly's Wings in Brazil set off a Tornado in Texas? - Title of 1972 talk by Edward Lorenz