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Universality and Computability

Fundamental questions:

Q. What is a general-purpose computer?

Q. Are there limits on the power of digital computers?

Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.

¢ Princeton == center of universe.
¢ Automata, languages, computability, universality, complexity, logic
A e =
~es
‘\ 5

ah % ﬁ}

David Hilbert Kurt Godel Alan Turing Alonzo Church John von Neumann

Context: Mathematics and Logic

Mathematics. Any formal system powerful enough to express arithmetic.

Principia Mathematics
Peano arithmetic
Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Can't prove contradictions like 2 + 2 = 5.
Decidable. Algorithm exists to determine truth of every statement.

Q. [Hilbert, 1900] Is mathematics complete and consistent?
A. [Gddel's Incompleteness Theorem, 1931] Nolll

Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?
A. [Church 1936, Turing 1936] Nol!

7.4 Turing Machines (revisited)

Alan Turing (1912-1954) Turing Machine by Tom Dunne
American Scientist, March-April 2002




Turing Machine

Desiderata. Simple model of computation that is "as powerful" as
conventional computers.

Intuition. Simulate how humans calculate.

Last lecture: DFA

Tape.

* Stores input.

* One arbitrarily long strip, divided into cells.
* Finite alphabet of symbols.

Ex. Addition.
Tape head. ®
* Points to one cell of tape. ] START
* Reads a symbol from active cell. - O
* Moves right one cell at a time. yoes °
1 2 3 4 5 &6
+ 3 1 4 1 5 9
tape head
|
tape 0 0 1 1 0 1 1 0
This lecture: Turing machine Last lecture: Deterministic Finite State Automaton (DFA)
Tape. Simple machine with N states.

* Stores input, output, and intermediate results.
* One arbitrarily long strip, divided into cells.
* Finite alphabet of symbols.

tape head

Tape head.

* Points to one cell of tape.

* Reads a symbol from active cell.

» Writes a symbol to active cell.

* Moves left or right one cell at a time.

tape head

|

tape .4.#11no+1o11#

* Begin in start state.

* Read first input symbol.

* Move to new state, depending on current state and input symbol.
* Repeat until last input symbol read.

* Accept input string if last state is labeled Y.

Input b




This lecture: Turing Machine

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled Y, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

if in this state and tape head is 1:

0 :1 * writea 0
* stay in this state
* move tape head left

™ P 0

Input # # 1 0 1 1 1 o0 1

TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move fo new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled ¥, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

if in this state and tape head is 0:
0 : 1 e writea 1
* go to other state
¢ halt

™ P 0

Input # # 1 0 1 1 1 0 0

TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move fo new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled ¥, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

/

™ 1:0

Output # # 1 0 1 1 1 1 O

TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move fo new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled ¥, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

/

™ 1:0

Input # # 1 0 1 1 1 o0 1
Output # # 1 0 1 1 1 1 O




Turing Machine: Initialization and Termination

Initialization. Set input on some portion of tape; set tape head position;
start in initial state.

tape head

tape ,..#01o+1111#

Termination. Stop if enter yes, no, or halt state.

Note: infinite loop possible!

Output. Contents of tape.

TM Example 1: Binary Increment

TM Example 1: Binary Increment

TM Example 1: Binary Increment




TM Example 1: Binary Increment

TM Example 2: Continuous Binary Counter

# : #
0 :1
e
1:0
# 1

TM Example 2: Continuous Binary Counter

# : #
0 :1
e
1:0
# 1

just counts;

never halts # # 1 0 0 #

TM Example 3: Binary Decrement




TM Example 3: Binary Decrement

TM Example 3: Binary Decrement

TM Example 3: Binary Decrement

TM Example 3: Binary Decrement

Q. What happens if we try to decrement 0 ?




TM Example 3: Binary Decrement

Q. What happens if we try to decrement O ?
A. Doesn't halt! (TMs can have bugs, t00.)

TM Example 4: Binary Adder

subtract one from y

find plus sign

Ex. Use simulator to understand how this TM works.

7.5 Universality

Universal Machines and Technologies
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Dell PC iPad

Diebold voting machine iPod Printer
@
(¢ //<
—— =
Xbox Tivo Turing machine T0Y Java language
eo0o0
PEORE LD
A tome | Layou | Tables | Chans . 5 qubit 215 Hz Q. Processor
B fom <
L T R T | ; N,
E Qoens B I|U| -] (& i
0 (00 A
A c o

MS Excel

cellphone

Quantum computer DNA computer Python language




Program and Data

Data. Sequence of symbols (interpreted one way).
Program. Sequence of symbols (interpreted another way).

Ex 1. A compiler is a program that takes a program in one language
as input and outputs a program in another language. Java

machine language

Your program \

public class HelloWorld
{
public static void main(String[] args)
{ <«— is DATA to a compiler
System.out.println("Hello, World");
}

Program and Data

Data. Sequence of symbols (interpreted one way).
Program. Sequence of symbols (interpreted another way).

Ex 2. A simulator is a program that takes a program for one machine
as input and simulates the operation of that program.

Data for

simulator \ ¢ more adder.tur
vertices

2 R

o we o
mm e e

o

he WL R OO O
OIS
shbo®m®t o0
PO S

AN

tape is a PROGRAM!
[1] 01 0+1111
Representations of a Turing Machine Universal Turing Machine
Graphical: ' i -
raphica ' COST'"UOUS CBC's Tape state, symbol CBC's Description
N inary
N Counter e o o[1]0|w |1 |# I |B|o|! * |A[O[O[A[R[*[A] o o o
1.1
#:1
Tabular: Current Symbol Symbol to | Next Directi
state read write State rection UTM Operation: UTM
A 0 0 A R * Find state, symbol in Description
] X ’ . N * Copy hew symbol to CBI's tape
* Move ¥ L or R
A o2 # B L * Update state, symbol
B 0 1 A R * Repeat
B 1 0 B L
B # 1 A R

Linear: *AOOAR*AI1AR*A##BL*BO1AR*B10BL...




Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

x —> M —> M(x)

data x

TM intuition. Hardware platform that solves one particular problem.

Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

Universal Turing machine U. Given input tape with x and M,
universal Turing machine U outputs M(x).

M —
x —> M —> M(x) U — M(x)
X —>
# [ 1 1 # # [ 1 1 # 1 0 1 1 #
- - e
data x data x program M

TM intuition. Hardware platform that solves one particular problem.
UTM intuition. Hardware platform that can imitate any TM.

Universal Turing Machine

Consequences. Your laptop (a UTM) can do any computational task.
« Java programming. \
. . . even tasks not yet contemplated
* Pictures, music, movies, games. when laptop was purchased
* Email, browsing, downloading files, telephony.
» Word-processing, finance, scientific computing.

—_
' ‘> “ Again, it [the Analytical Engine] might act upon other things besides
" numbers... the engine might compose elaborate and scientific pieces of

\ music of any degree of complexity or extent. ” — Ada Lovelace
/_

Church-Turing Thesis

Church Turing thesis (1936). Turing machines can do anything that can be
described by any physically harnessable process of this universe.

Remark. "Thesis" and nhot a mathematical theorem because it's a statement
about the physical world and not subject to proof.
N but can be falsified
Use simulation to prove models equivalent.
* TOY simulator in Java
* Java compiler in TOY.

Implications.
* No need to seek more powerful machines or languages.

* Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.




Church-Turing Thesis: Evidence

Evidence. "universal"
* 7 decades without a counterexample. /
* Many, many models of computation that turned out to be equivalent.

enhanced Turing machines multiple heads, multiple tapes, 2D tape, hondeterminism
untyped lambda calculus method to define and manipulate functions
recursive functions functions dealing with computation on integers
unrestricted grammars iterative string replacement rules used by linguists
extended L-systems parallel string replacement rules that model plant growth
programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel
random access machines registers plus main memory, e.g. TOY, laptop, supercomputer
cellular automata cells which change state based on local interactions
quantum computer compute using superposition of quantum states
DNA computer compute using biological operations on DNA

7.6 Computability

Take any definite unsolved problem, such as the question as to the
irrationality of the Euler-Mascheroni constant vy, or the existence of an
infinite number of prime numbers of the form 2"-1. However
unapproachable these problems may seem to us and however helpless we
stand before them, we have, nevertheless, the firm conviction that their
solution must follow by a finite number of purely logical processes.

-David Hilbert, in his 1900 address to the International
Congress of Mathematics

Introduction fo Computer Science + Sedgewick and Wayne - Copyright © 2007 - http://www.cs.Princeton.EDU/IntroCS

A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 1: v P e R
H H H H N =4
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 2: a R = P
H H H H N =4
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?




A Puzzle: Post's Correspondence Problem Halting Problem
Halting problem. Write a Java function that reads in a Java function £

Given a set of cards:
and its input x, and decides whether £ (x) results in an infinite loop.

* N card types (can use as many copies of each type as needed).

* Each card has a top string and bottom string.
Easy for some functions, not so easy for others.

H H H H Ex. Does £ (x) terminate?
relates to famous
0 1 2 3

public void f (int x)
open math conjecture

{
while (x != 1)

Puzzle:
* Is it possible o arrange cards so that top and bottom strings match? { if (x%2==0) x=x/ 2;
else x = 3*x + 1;
Challenge: ) }
* Write a program to take cards as input and solve the puzzle.
£(6): 6 3105168 421
£(27) : 27 82 41 124 62 31 94 47 142 71 214 107 322 .. 4 21
£(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 .. ~-17 ..
Undecidable Problem Halting Problem: Preliminaries
A yes-no problem is undecidable if no Turing machine exists fo solve it. Some programs ftake other programs as input
N + Java compiler, e.g.

and (by universality) no Java program either

Can a program take itself as input ??

Theorem. [Turing 1937] The halting problem is undecidable. Why not ?
* TextGenerator could take TextGenerator.java as input, produce a Markov
model of itself, and generate Java-like text.

Proof intuition: lying paradox.
* Divide all statements into two categories: truths and lies.
* How do we classify the statement: "I am lying" ?

* GuitarHero could "play” the characters in GuitarHero.java.

* Almost always a peculiar thing to do, but we'll be interested only in

Key element of lying paradox and halting proof: self-reference. whether the program halts, or goes into an infinite loop.




Halting Problem Proof

Assume the existence of halt (£,x):
e Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Note. halt(f,x) does hot go into infinite loop.

We prove by contradiction that halt (£,x) does not exist.
* Reductio ad absurdum : if any logical argument based on an assumption
leads to an absurd statement, then assumption is false.

encode f and x as strings

N\

public boolean halt(String £, String x)
{

if ( something terribly clever ) return true;
else return false;

hypothetical halting function

Halting Problem Proof

Assume the existence of halt (£,x):
* Input: a function £ and its input x.
* Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
* If halt (£, f) refurns true, then strange (£) goes into an infinite loop.
¢ If nalt (£, £) returns false, then strange (£) halts.

f is a String, so it is legal (if perverse) to use it for second argument

public void strange(String f)
{
if (halt(f, £f))

while (true) { } // an infinite loop

Halting Problem Proof

Assume the existence of halt (£,x):
e Input: a function £ and its input x.
* Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
* If halt (£, £) refurns true, then strange (£) goes into an infinite loop.
¢ If nalt (£, £) returns false, then strange (£) halts.

In other words:
o If £(£) halts, then strange (£) goes into an infinite loop.
o If £(£) does not halt, then strange (£) halts.

Call strange () with ITSELF as input.
¢ If strange (strange) halts then strange (strange) does hot halt.
¢ If strange (strange) does not halt then strange (strange) halts.

Either way, a contradiction. Hence halt(£,x) cannot exist. I'

Consequences

Q. Why is debugging hard?
A. All problems below are undecidable.

Halting problem. Give a function f, does it halt on a given input x?
Totality problem. Give a function f, does it halt on every input x?
No-input halting problem. Give a function f with no input, does it halt?
Program equivalence. Do two functions f and g always return same value?
Uninitialized variables. Is the variable x initialized before it's used?
Dead-code elimination. Does this statement ever get executed?




Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Ll

* Is it possible to arrange cards so that top and bottom strings match?

Challenge:
* Write a program to take cards as input and solve the puzzle.

is UNDECIDABLE

More Undecidable Problems

Hilbert's 10th problem.
* "Devise a process according to which it can be determined by a finite number of
operations whether a given multivariate polynomial has an integral root.”

Examples.

e f(x,y, z) = 6x3y 2% + 3xy? - x3 - 10.
« f(x,y)=x2+y2-3.

cf(x,y, z)=x"+y"- 2"

yes: f(5,3,0)=0

no
yesifn=2,x=3,y=4,2z=5
noifn=3and x,y,z>0.
(Fermat's Last Theorem)

L

Andrew Wiles, 1995

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a given
string or picture.

Mandelbrot set (40 lines of code)

More Undecidable Problems

Virus identification. Is this program a virus?

Private Sub AutoOpen ()

On Error Resume Next

If System.PrivateProfileString("", CURRENT USER\Software\Microsoft\Office\9.0\Word\Security",
"Level") <> "" Then

CommandBars ("Macro") .Controls ("Security...") .Enabled = False

For oo = 1 To AddyBook.AddressEntries.Count

Peep = AddyBook.AddressEntries (x) Can write programs in MS Word.

BreakUmOffASlice.Recipients.Add Peep This statement disables security.
x=x+1
If x > 50 Then oo = AddyBook.AddressEntries.Count

Next oo

BreakUmOffASlice.Subject = "Important Message From " & Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)"

Melissa virus
March 28, 1999




Turing's Key Ideas

6\

Turing machine.

formal model of computation

Program and data.

encode program and data as sequence of symbols

Universality.

concept of general-purpose, programmable computers

Church-Turing thesis.

c ble at all == computable with a Turing machine
Computability.

inherent limits to computation

)

Hailed as one of top 10 science papers of 20™ century.

Reference: On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing.
InProceedings of the London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265.
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