
Universality and Computability

Fundamental questions: 
Q.  What is a general-purpose computer? 
Q.  Are there limits on the power of digital computers? 
Q.  Are there limits on the power of machines we can build? 
!
Pioneering work in the 1930s. 
• Princeton == center of universe. 
•Automata, languages, computability, universality, complexity, logic

David Hilbert Kurt Gödel Alan Turing Alonzo Church John von Neumann

Context:  Mathematics and Logic

Mathematics.  Any formal system powerful enough to express arithmetic.  
!
!
!
!
Complete.  Can prove truth or falsity of any arithmetic statement. 
Consistent.  Can't prove contradictions like 2 + 2 = 5. 
Decidable.  Algorithm exists to determine truth of every statement. 
!
!
Q.  [Hilbert, 1900]  Is mathematics complete and consistent? 
A.  [Gödel's Incompleteness Theorem, 1931]  No!!! 
!
Q.  [Hilbert's Entscheidungsproblem]  Is mathematics decidable? 
A.  [Church 1936, Turing 1936]  No! 

Principia Mathematics  
Peano arithmetic  
Zermelo-Fraenkel set theory

7.4  Turing Machines (revisited)

Alan Turing (1912-1954) Turing Machine by Tom Dunne 
American Scientist, March-April 2002



Turing Machine

Desiderata.  Simple model of computation that is "as powerful" as 
conventional computers. 
!
Intuition.  Simulate how humans calculate. 
!
Ex.  Addition.
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0 0 0 0
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0 0 0 0

0 0 0
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0 0 0 0 0 0 0 0 0 0 0

Last lecture:  DFA

Tape. 
• Stores input. 
•One arbitrarily long strip, divided into cells. 
• Finite alphabet of symbols. 
!
!
Tape head. 
• Points to one cell of tape. 
• Reads a symbol from active cell. 
•Moves right one cell at a time.

tape head

tape 1 1 1 0 1 1 0 1 1 0 …… 0

This lecture:  Turing machine

Tape. 
• Stores input, output, and intermediate results. 
•One arbitrarily long strip, divided into cells. 
• Finite alphabet of symbols. 
!
!
Tape head. 
• Points to one cell of tape. 
• Reads a symbol from active cell. 
•Writes a symbol to active cell. 
•Moves left or right one cell at a time.

tape head

tape

tape head

tape # 1 1 0 0 + 1 0 1 1 # ……

Last lecture: Deterministic Finite State Automaton (DFA)

Simple machine with N states. 
• Begin in start state. 
• Read first input symbol. 
•Move to new state, depending on current state and input symbol.  
• Repeat until last input symbol read. 
• Accept input string if last state is labeled Y.

Y NN
b b

 a  a a

 b

b b a a b b a b bb b a a b b a b bInput

DFA



This lecture: Turing Machine

Simple machine with N states. 
• Begin in start state. 
• Read first input symbol. 
•Move to new state and write new symbol on tape, depending on current state 

and input symbol. 
•Move tape head left if state is labeled L, right if state is labeled R.  
• Repeat until entering a state labelled Y, N, or H. 
• Accept input string if state is labeled Y, reject if N 

[or leave result of computation on tape].

b b a a b b a b b# # 1 0 1 1 1 0 1Input

1 : 0H L

# : 1

0 : 1

1 : 0TM

if in this state and tape head is 1:!
• write a  0 
• stay in this state 
• move tape head left

TM Example

b b a a b b a b b# # 1 0 1 1 1 0 0Input

1 : 0H L

# : 1

0 : 1

1 : 0TM

Simple machine with N states. 
• Begin in start state. 
• Read first input symbol. 
• Move to new state and write new symbol on tape, depending on current state 

and input symbol. 
• Move tape head left if state is labeled L, right if state is labeled R.  
• Repeat until entering a state labelled Y, N, or H. 
• Accept input string if state is labeled Y, reject if N 

[or leave result of computation on tape].
if in this state and tape head is 0:!

•  write a  1 
•  go to other state 
•  halt

TM Example

b b a a b b a b b# # 1 0 1 1 1 1 0Output

1 : 0H L

# : 1

0 : 1

1 : 0TM

Simple machine with N states. 
• Begin in start state. 
• Read first input symbol. 
• Move to new state and write new symbol on tape, depending on current state 

and input symbol. 
• Move tape head left if state is labeled L, right if state is labeled R.  
• Repeat until entering a state labelled Y, N, or H. 
• Accept input string if state is labeled Y, reject if N 

[or leave result of computation on tape].

TM Example

b b a a b b a b b# # 1 0 1 1 1 1 0Output

1 : 0H L

# : 1

0 : 1

1 : 0TM

b b a a b b a b b# # 1 0 1 1 1 0 1Input

Simple machine with N states. 
• Begin in start state. 
• Read first input symbol. 
• Move to new state and write new symbol on tape, depending on current state 

and input symbol. 
• Move tape head left if state is labeled L, right if state is labeled R.  
• Repeat until entering a state labelled Y, N, or H. 
• Accept input string if state is labeled Y, reject if N 

[or leave result of computation on tape].



Turing Machine:  Initialization and Termination

Initialization.  Set input on some portion of tape; set tape head position;                              
start in initial state. 
!
!
!
!
!
!
Termination.  Stop if enter  yes, no, or halt state. 
!
!
Output. Contents of tape.

Note: infinite loop possible!

tape head

# 1 0 1 0 + 1 1 1 1 # ……tape

TM Example 1: Binary Increment

# 1 0 1 1 # …

1 : 0

…

H L

# : 1

0 : 1

1 : 0

TM Example 1: Binary Increment

# 1 0 1 1 # …

1 : 0

…

H L

# : 1

0 : 1

1 : 0

# 1 0 1 0 # ……

TM Example 1: Binary Increment

# 1 0 1 1 # …

1 : 0

…

H L

# : 1

0 : 1

1 : 0

# 1 0 1 0 # ……

# 1 0 0 0 # ……



TM Example 1: Binary Increment

# 1 0 1 1 # …

1 : 0

…

H L

# : 1

0 : 1

1 : 0

# 1 0 1 0 # ……

# 1 1 0 0 # ……

TM Example 2: Continuous Binary Counter

# # # # # # …

1 : 0

…

R L

0 : 1
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# : #
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TM Example 2: Continuous Binary Counter

# # # # # # …

1 : 0

…

R L

0 : 1

1 : 0

# : #

# : 1

# # # # 1 # ……

# # # # 1 # ……

# # # 1 0 # ……

# # # 1 1 # ……

. . .

# # 1 0 0 # ……

. . .
just counts; 
never halts

TM Example 3: Binary Decrement

# 1 1 0 0 # …

0 : 1 HL0 : 1 1 : 0

…



TM Example 3: Binary Decrement

# 1 1 0 0 # …

0 : 1 HL0 : 1 1 : 0

…

# 1 1 0 1 # ……

TM Example 3: Binary Decrement

# 1 1 0 0 # …

0 : 1 HL0 : 1 1 : 0

…

# 1 1 0 1 # ……

# 1 1 1 1 # ……

TM Example 3: Binary Decrement

# 1 1 0 0 # …

0 : 1 HL0 : 1 1 : 0

…

# 1 1 0 1 # ……

# 1 0 1 1 # ……

TM Example 3: Binary Decrement

# 0 0 0 0 # …

0 : 1 HL0 : 1 1 : 0

…

!
!
!
!
Q.  What happens if we try to decrement 0 ?



TM Example 3: Binary Decrement

# 0 0 0 0 # …

0 : 1 HL0 : 1 1 : 0

…

!
!
!
!
Q.  What happens if we try to decrement 0 ? 
A.  Doesn’t halt! (TMs can have bugs, too.)

# 1 1 1 1 # ……

. . .

TM Example 4: Binary Adder

# 1 0 1 0 + 1 1 1 1 # …

find right end of y add one to x

subtract one from y find plus sign

1 : 0

0 : 1

…

x y

haltclean up

1 : #

R

L

L

L

R H

# : 1

0 : 1

0 : 1 1 : 0

+ : +

1 : 0

# : # # : #

+ : #

1 : #

Ex.  Use simulator to understand how this TM works.

7.5  Universality

Universal Machines and Technologies

iPodiPad PrinterDell PC

Xbox Tivo Turing machine TOY Java language

MS Excel Python languagecellphone Quantum computer DNA computer

Diebold voting machine



Program and Data

Data.  Sequence of symbols (interpreted one way). 
Program.  Sequence of symbols (interpreted another way). 
!
Ex 1.  A compiler is a program that takes a program in one language 
as input and outputs a program in another language. Java

machine language

public class HelloWorld 
{ 
    public static void main(String[] args) 
    { 
        System.out.println("Hello, World"); 
    } 
}

is DATA to a compiler

Your program

Data.  Sequence of symbols (interpreted one way). 
Program.  Sequence of symbols (interpreted another way). 
!
Ex 2.  A simulator is a program that takes a program for one machine 
as input and simulates the operation of that program.

% more adder.tur  
vertices 
2 R 
0 L 
1 L 
3 L 
4 R 
5 H !
edges 
0 0 0 1 
0 1 1 0 
0 4 + # 
1 3 + + 
2 0 # # 
3 2 # 1 
3 2 0 1 
3 3 1 0 
4 4 1 # 
4 5 # # !
tape 
[1] 0 1 0 + 1 1 1 1

Program and Data

# 1 0 1 0 + 1 1 1 1 # ……

is a PROGRAM!

Data for 
simulator

Graphical: 
!
!
!
!
!
!
Tabular: 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Linear:  * A 0 0 A R * A 1 1 A R * A # # B L * B 0 1 A R * B 1 0 B L . . .

Representations of a Turing Machine

Current 
 state

Symbol 
read

Symbol to 
write

Next 
State

Direction

A 0 0 A R

A 1 1 A R

A # # B L

B 0 1 A R

B 1 0 B L

B # 1 A R

Continuous 

Binary 

Counter

1:0

0:1R L
#:#

#:1
1:1

0:0

A B . . .. . .
CBC’s DescriptionCBC’s Tape state, symbol

UTM

Universal Turing Machine

UTM Operation: 
• Find state, symbol in Description 
• Copy new symbol to CBI’s tape 
• Move ♥ L or R 
• Update state, symbol 
• Repeat

1 A* *A A0 0 R!! B 010 ♥ #



Universal Turing Machine

Turing machine M.  Given input tape x, Turing machine M outputs M(x). 
!
!
!
!
!
!
!
!
!
!
!
!
!
TM intuition.  Hardware platform that solves one particular problem.

Mx M(x)

… # 0 1 1 # …

data x

Universal Turing Machine

Turing machine M.  Given input tape x, Turing machine M outputs M(x). 
!
Universal Turing machine U. Given input tape with x and M, 
universal Turing machine U outputs M(x). 
!
!
!
!
!
!
!
!
!
!
TM intuition.  Hardware platform that solves one particular problem. 
UTM intuition.  Hardware platform that can imitate any TM.

U
M

x
M(x)Mx M(x)

… # 0 1 1 # … … # 0 1 1 # 1 0 1 1 # …

data x data x program M

Universal Turing Machine

Consequences.   Your laptop (a UTM) can do any computational task. 
• Java programming.  
• Pictures, music, movies, games. 
• Email, browsing, downloading files, telephony. 
•Word-processing, finance, scientific computing. 
• . . .

“ Again, it [the Analytical Engine] might act upon other things besides  
   numbers… the engine might compose elaborate and scientific pieces of  
   music of any degree of complexity or extent. ” — Ada Lovelace

even tasks not yet contemplated  
when laptop was purchased

Church-Turing Thesis

!
!
!
!

Remark.  "Thesis" and not a mathematical theorem because it's a statement 
about the physical world and not subject to proof.  
!
Use simulation to prove models equivalent. 
• TOY simulator in Java 
• Java compiler in TOY. 
!
Implications. 
•No need to seek more powerful machines or languages. 
• Enables rigorous study of computation (in this universe). 
!

Bottom line.  Turing machine is a simple and universal model of computation.

Church Turing thesis (1936).  Turing machines can do anything that can be 
described by any physically harnessable process of this universe.

but can be falsified



Church-Turing Thesis:  Evidence

Evidence. 
• 7 decades without a counterexample. 
•Many, many models of computation that turned out to be equivalent.

"universal"

model of computation description

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism

untyped lambda calculus method to define and manipulate functions

recursive functions functions dealing with computation on integers

unrestricted grammars iterative string replacement rules used by linguists

extended L-systems parallel string replacement rules that model plant growth

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel

random access machines registers plus main memory, e.g. TOY, laptop, supercomputer

cellular automata cells which change state based on local interactions

quantum computer compute using superposition of quantum states

DNA computer compute using biological operations on DNA

Take any definite unsolved problem, such as the question as to the 
irrationality of the Euler-Mascheroni constant γ, or the existence of an 
infinite number of prime numbers of the form 2n-1.  However 
unapproachable these problems may seem to us and however helpless we 
stand before them, we have, nevertheless, the firm conviction that their 
solution must follow by a finite number of purely logical processes. 
!

   -David Hilbert, in his 1900 address to the International 
    Congress of Mathematics

Introduction to Computer Science   •   Sedgewick and Wayne   •   Copyright © 2007   •   http://www.cs.Princeton.EDU/IntroCS

7.6  Computability

Given a set of cards: 
•N card types (can use as many copies of each type as needed). 
• Each card has a top string and bottom string. 
!

Example 1: 
!
!
!
Puzzle: 
• Is it possible to arrange cards so that top and bottom strings match?

A Puzzle:  Post's Correspondence Problem

2

AB

B

3

BA

B

1

A

ABA

0

BAB

A
N = 4

A Puzzle:  Post's Correspondence Problem

Given a set of cards: 
•N card types (can use as many copies of each type as needed). 
• Each card has a top string and bottom string. 
!

Example 2: 
!
!
!
Puzzle: 
• Is it possible to arrange cards so that top and bottom strings match?

2

B

A

3

A

B

1

ABA

B

0

A

BAB
N = 4



A Puzzle:  Post's Correspondence Problem

Given a set of cards: 
•N card types (can use as many copies of each type as needed). 
• Each card has a top string and bottom string. 
!

  
!
!
!
Puzzle: 
• Is it possible to arrange cards so that top and bottom strings match? 
!
Challenge:  
•Write a program to take cards as input and solve the puzzle. 
!
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. . .

Halting Problem

Halting problem.  Write a Java function that reads in a Java function f  
and its input x, and decides whether f(x) results in an infinite loop. 
!

Easy for some functions, not so easy for others. 
!
Ex.  Does f(x) terminate? 
!
!
!
!
!
!
!

                 f(6):    6 3 10 5 16 8 4 2 1 
           f(27):   27 82 41 124 62 31 94 47 142 71 214 107 322 … 4 2 1 
           f(-17):  -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 …  -17 …

public void f(int x) 
{ 
   while (x != 1) 
   { 
      if  (x % 2 == 0) x = x / 2;  
      else             x = 3*x + 1; 
   } 
}

relates to famous 
open math conjecture

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.  

!
!
!
!
!
!
Proof intuition:  lying paradox. 
• Divide all statements into two categories:  truths and lies. 
•How do we classify the statement: “I am lying” ?  
!

Key element of lying paradox and halting proof:  self-reference.

Theorem.  [Turing 1937]   The halting problem is undecidable.

and (by universality) no Java program either

Halting Problem: Preliminaries

Some programs take other programs as input 
• Java compiler, e.g. 
!

Can a program take itself as input ?? 
!
Why not ? 
• TextGenerator could take TextGenerator.java as input, produce a Markov 

model of itself, and generate Java-like text.!
!

• GuitarHero could “play” the characters in GuitarHero.java. 
!

• Almost always a peculiar thing to do, but we’ll be interested only in 
whether the  program halts, or goes into an infinite loop.



Halting Problem Proof

Assume the existence of halt(f,x): 
• Input:  a function f and its input x. 
•Output:  true if f(x) halts, and false otherwise. 
!

Note.  halt(f,x) does not go into infinite loop. 
!

We prove by contradiction that halt(f,x) does not exist. 
• Reductio ad absurdum :  if any logical argument based on an assumption 

leads to an absurd statement, then assumption is false.

public boolean halt(String f, String x)  
{ 
   if ( something terribly clever ) return true; 
   else                             return false; 
}

encode f and x as strings

hypothetical halting function

Halting Problem Proof

Assume the existence of halt(f,x): 
• Input:  a function f and its input x. 
•Output:  true if f(x) halts, and false otherwise. 
!

Construct function strange(f) as follows: 
• If halt(f,f) returns true, then strange(f) goes into an infinite loop.  
• If halt(f,f) returns false, then strange(f) halts.

f is a String, so it is legal (if perverse) to use it for second argument

public void strange(String f) 
{ 
   if (halt(f, f)) 
   { 
      while (true) { } // an infinite loop 
   } 
}

Halting Problem Proof

Assume the existence of halt(f,x): 
• Input:  a function f and its input x. 
•Output:  true if f(x) halts, and false otherwise. 
!

Construct function strange(f) as follows: 
• If halt(f,f) returns true, then strange(f) goes into an infinite loop.  
• If halt(f,f) returns false, then strange(f) halts. 
!

In other words: 
• If f(f) halts, then strange(f) goes into an infinite loop. 
• If f(f) does not halt, then strange(f) halts. 
!

Call strange()with ITSELF as input. 
• If strange(strange) halts then strange(strange) does not halt. 
• If strange(strange) does not halt then strange(strange) halts. 
!Either way, a contradiction.  Hence halt(f,x) cannot exist.  

Consequences

Q.  Why is debugging hard? 
A.  All problems below are undecidable.  
!
!
Halting problem.  Give a function f, does it halt on a given input x? 
Totality problem.  Give a function f, does it halt on every input x? 
No-input halting problem.  Give a function f with no input, does it halt? 
Program equivalence.  Do two functions f and g always return same value? 
Uninitialized variables.  Is the variable x initialized before it's used? 
Dead-code elimination.  Does this statement ever get executed?



Post's Correspondence Problem

Given a set of cards: 
•N card types (can use as many copies of each type as needed). 
• Each card has a top string and bottom string. 
!

  
!
!
!
Puzzle: 
• Is it possible to arrange cards so that top and bottom strings match? 
!
Challenge:  
•Write a program to take cards as input and solve the puzzle. 
!

is UNDECIDABLE
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More Undecidable Problems
Hilbert’s 10th problem. 
• “Devise a process according to which it can be determined by a finite number of 

operations whether a given multivariate polynomial has an integral root.” 
!

Examples. 
• f(x, y, z) = 6x3 y z2 + 3xy2 - x3 – 10. 
• f(x, y) = x2 + y2 – 3. 
• f(x, y, z) = xn + yn – zn

Andrew Wiles, 1995

yes:  f(5, 3, 0) = 0
no

no if n ≥ 3 and x, y, z > 0.�
(Fermat's Last Theorem)

yes if n = 2, x = 3, y = 4, z = 5

More Undecidable Problems

Optimal data compression.  Find the shortest program to produce a given 
string or picture.

Mandelbrot set (40 lines of code)

More Undecidable Problems

Virus identification.  Is this program a virus?

Private Sub AutoOpen()  
On Error Resume Next  
If System.PrivateProfileString("", CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security", 
                               "Level") <> "" Then 

CommandBars("Macro").Controls("Security...").Enabled = False 
. . . 
For oo = 1 To AddyBook.AddressEntries.Count 
   Peep = AddyBook.AddressEntries(x) 
   BreakUmOffASlice.Recipients.Add Peep 
   x = x + 1 
   If x > 50 Then oo = AddyBook.AddressEntries.Count 
Next oo 
. . . 
BreakUmOffASlice.Subject = "Important Message From " & Application.UserName 
BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)" 
. . .

Melissa virus  
March 28, 1999

Can write programs in MS Word.  
This statement disables security.



Turing's Key Ideas

!
Turing machine.  
formal model of computation!

Program and data.  
encode program and data as sequence of symbols!

Universality. 
concept of general-purpose, programmable computers!

Church-Turing thesis.  
computable at all == computable with a Turing machine!

Computability. 
inherent limits to computation!
!

!
!

Hailed as one of top 10 science papers of 20th century. 
Reference:  On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing.  
In Proceedings of the London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265.


