6.1 Combinational Circuits

George Boole (1815 - 1864) Claude Shannon (1916 - 2001)

Signals and Wires

Digital signals
* Binary (or “logical”) values: 1 or O, on or off, high or low voltage

Wires.
* Propagate logical values from place to place.
* Signals "flow" from left fo right.
- A drawing convention, sometimes violated
- Actually: flow from producer to consumer(s) of signal

0 0
1 1
1
1
Input Output

Logic Gates

Logical gates.
* Fundamental building blocks.

NOT AND OR

Multiway AND Gates

AND(Xg, Xq, X5, X3, X4, X5, X4, X7).
= 1if all inputs are 1.
* 0 otherwise.

x0

x1

x2
x3

x4 AND
x5

x6
x7




Multiway OR Gates

OR(Xq, X1, X5, X3, X4, X5, Xg, X7).
= 1if at least one input is 1.
* 0 otherwise.

x0

x1

x2
x3

x4
x5

x6
x7

Boolean Algebra

History.
* Developed by Boole to solve mathematical logic problems (1847).
= Shannon master's thesis applied it to digital circuits (1937).

"possibly the most important, and also the most famous,
master's thesis of the [20th] century" --Howard Gardner

Basics.
* Boolean variable: value is O or 1.
* Boolean function: function whose inputs and outputs are O, 1.

Relationship to circuits.
* Boolean variables: signals.
* Boolean functions: circuits.

AN INVESTIGATION

THE LAWS OF THOUGHT,

Truth Table

Truth table.

= Systematic method to describe Boolean function.

= One row for each possible input combination.
* Ninputs = 2N rows.

0
AND Truth Table 0
X y AND(x,y) 0
0 0 0 1
0 1 0
1 0 0 !
0
1 1 1

—_ =

Truth Table for Functions of 2 Variables

Truth table.
* 16 Boolean functions of 2 variables.
- every 4-bit value represents one

Truth Table for All Boolean Functions of 2 Variables

X y ZERO AND x y XOR OR
0lo[l o[ o[ o] of]o]o]o]o
ol1] o o | o 1 1 1 1
1|lo] o | o 1 1t o] o 1 1
1]1] o 1 0 1t [ o 1 [ o 1

Truth Table for All Boolean Functions of 2 Variables
NOR EQ x' NAND ONE

== O[O Bt
= O (= O pd

Y
1
0
1
0

[SR N e Y T

o |Oo|Oo
—|o|o|~
olo|~|~
= O
Ol ||
_ ==




Truth Table for Functions of 3 Variables

Truth table.
= 16 Boolean functions of 2 variables.
- every 4-bit value represents one
= 256 Boolean functions of 3 variables.
- every 8-bit value represents one
= 27(2"N) Boolean functions of N variables!

Some Functions of 3 Variables
AND OR MAJ ODD

X y z

0|0]0 0 0 0 0
0]0]1 0 1 0 1
0|1]0 0 1 0 1
0|1]1 0 1 1 0
1/]0]0 0 1 0 1
1]0]1 0 1 1 0
1]1]0 0 1 1 0
1]1]1 1 1 1 1

L)

Universality of AND, OR, NOT

Any Boolean function can be expressed using AND, OR, NOT.

= "Universal."
Notation ~ Meaning

= XOR(x)y) = xy' +x'y - NOT
Xy x AND y
Expressing XOR Using AND, OR, NOT i) XORy

X' x'y xy' x'y+xy' XOR

y
1
0
1
0

Exercise. Show {AND, NOT}, {OR, NOT}, {(NAND}, {AND, XOR} are universal.
Hint. Use DeMorgan's Law: (xy) = (X' +y') and (x +y) = (xX'y')

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.
* Sum-of-products is systematic procedure.
- form AND ferm for each 1 in truth table of Boolean function
- OR terms together

Expressing MAJ Using Sum-of-Products

MAJ x'yz xy'z xyz' xyz X'yz +xy'z + xyz' + xyz

O |O (=~ |O|O pd

OOl |O|O|O|O
~| OO0 |O|O|O
=== O ~= OO0

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
= XOR(x,y)=xy' +x'y.




Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
= MAJ(X,y,2)=x'yz+xy'z+xyz' +xyz.

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.
= Sum-of-products not necessarily optimal in:
- number of gates (space)
- depth of circuit (time)

= MAJ(X,y,2) = X'yz+xy'z+xyz' +Xyz = Xy +Yyz+X2Z.

size = 8, depth = 3

size = 4, depth = 2

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

* AND gaftes.
* OR gates.

* NOT gates.
= Wire.

Instructions.
= Step 1: represent input and output signals with Boolean variables.
= Step 2: construct truth table to carry out computation.
= Step 3: derive (simplified) Boolean expression using sum-of products.
= Step 4: transform Boolean expression into circuit.

ODD Parity Circuit

oDD(x,y, z).
* 1if odd number of inputs are 1.
* 0 otherwise.

Expressing ODD Using Sum-of-Products

X y z ODD x'y'z x'yz' xy'z' xyz x'y'z+x'yz'+xy'z'+xyz
0|0]|O0 0 0 0 0 0 0
0|01 1 1 0 0 0 1
o|1]0 1 0 1 0 0 1
0O|1]1 0 0 0 0 0 0
1/]0]0 1 0 0 1 0 1
1101 0 0 0 0 0 0
1]1]0 0 0 0 0 0 0
1111 1 0 0 0 1 1




ODD Parity Circuit

oDD(x, y, z).
* 1if odd number of inputs are 1.
* 0 otherwise.

Let's Make an Adder Circuit

Goal: x +y =z for 4-bit integers. 1 1 1 0
* We build 4-bit adder: 9 inputs, 4 outputs. 2 4 8 7
* Same idea scales to 128-bit adder. sl e
* Key computer component.

6 0 6 6

Step 1.

* Represent input and output in binary. 1 1 0 O
0O 0 1 O
X3 o 1 1 1
% 1 0 0 1
X4
Xo Z,
Z; G G & &
Z
X3 Xz X3 X
y %
’ Ys Y2 Y1 Yo
Y2
Y1 Zy z, zZ, Z,
Yo

20

Let's Make an Adder Circuit
Goal: x +y =z for 4-bit integers. Co

Step 2. (first attempt)
* Build truth table.
* Why is this a bad idea?
- 128-bit adder: 2256*1 pows > # electrons in universe!

4-Bit Adder Truth Table

Co X3 X X3 Xo Y3 Y2 Y1 Yo Z3 Z; Z; Z
oJloJo]Jo]loflo]Jolo]olofloflo|o]| O
ololo]o]lolololo]1]olo]o]1
oloflo]lo]loflofol1]o]lofo]1]0
ololo]o]loJolol1]1]olo]1]1 > 254 = 512 rowsl
oloflo]lo]loflo]lt|lo]o]o|lt]o]o0
ololo]o]lolot]lo]1]o]1]0]1

L e fa e e e falaa]a]1] )

21

Let's Make an Adder Circuit

Goal: x +y = z for 4-bit integers.
Step 2. (do one bit at a time)

* Build truth table for carry bit.
* Build truth table for summand bit.

Carry Bit
i Y & Ga

Summand Bit
. yi . .

X X; ¢ z;
0j]0]O0 0 0/]0]0 0
0|01 0 0|0]|1 1
o|j1]0 0 oO|1]0 1
o|1]1 1 o|1]1 0
1]1]0]0 0 1/0]0 1
1]10]1 1 1]1]0]1 0
1]1]0 1 111]0 0
11111 1 11111 1

22




Let's Make an Adder Circuit

Goal: x +y =z for 4-bit integers.

Step 3.
= Derive (simplified) Boolean expression.

Summand Bit
Yi

Carry Bit

X
= O|= O~ |O|~ O Ml
X
(9]

Yi

N

=== O =[O0 |0 K

i

=== = O0|0O |0
== O|0O|—=|[—=O|O

=== OO0 |0

~ = O|O|—|[—|O|O

=IO~ |O—=|O(~|O

= OO~ |O|—|—] O

23

Let's Make an Adder Circuit

Goal: x +y = z for 4-bit integers.

Step 4.
* Transform Boolean expression into circuit.
* Chain ftogether 1-bit adders.

x0

40

z3 z2 z1 z0

Let's Make an Adder Circuit

Goal: x +y =z for 4-bit integers.

Step 4.
* Transform Boolean expression into circuit.
* Chain fogether 1-bit adders.

i | \
A~ [ (AN

~w—

AT

z3 z2 z1

25

Subtractor

Subtractor circuit: z=x -y.
* One approach: new design, like adder circuit.
* Better idea: reuse adder circuit.
- 2's complement: to negate an integer, flip bits, then add 1

X3
X2
X1
Xo Z3
Z,
Zy
Y3 Zy
X -y y
2

1

4-Bit Subtractor Interface 4-Bit Subtractor Implementation

26




TOY Arithmetic Logic Unit: Interface

ALU Interface.
* Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
= Associate 3-bit integer with 5 primary ALU operations.
- ALU performs operations in parallel
- control wires select which result ALU outputs

2"-to-1 Multiplexer

n = 8 for main memory

4

2"-to-1 multiplexer.

* nselect inputs, 2" data
inputs, 1 output.

= Copies "selected"
data input bit to output.

29

COS 126: General Computer Science http://www.Princeton.EDU/~cos126

Input 1
op 2 1 0 P Xo——o0
b 0100 X 001
0 0|1 X2 1010
i v1ay = 011 8+to1 y
<<, > 0| 1]1 X4 100 mux
input 2 1]1]0]0 Tnput 2 X5 101 \@c,’\ Xy
Xq 1m0 <
ALU select X7 1 .
0
shift subtract st Sz *1 %
direction Y 8-to-1 Mux Interface 8-to-1 Mux Implementation N
TOY Arithmetic Logic Unit: Implementation
Input1 — 6.2: Sequential Circuits
16 000
Input 2
?’; carry in
Mom D
S —1—Q
16
MUX z
A\
] 010
7 Y
R
o1 <
o= o|ofo 100
0 o1 3
- of|1]o
<<, > 0 1)1 hift di - |
input 2 T 1ol o subtract shift direction ALU select




Sequential vs. Combinational Circuits

Combinational circuits.

* Output determined solely by inputs. Yy MAJ
* Can draw solely with left-to-right
signal paths. 5

Sequential circuits.

Flip-Flop

Flip-flop.

* A small and useful sequential circuit.

* Abstraction that "remembers" one bit.

= Basis of important computer components:
- memory
- counter

We will consider several flavors.

* Output determined by inputs > [ Q
AND previous outputs.
* Feedback loop. R '
SR Flip-Flop SR Flip-Flop

What is the value of Q if:
* S=1andR=07? = Qissurelyl

33

What is the value of Q if:
* S=1andR=0? = Qissurely1
= S=0andR=1? = Qissurely 0

34




SR Flip-Flop

What is the value of Q if:

* S=1andR=07? = Qissurely1
= S=0andR=1? = Qissurely 0
= S=0andR=0? = Qis possibly O

35

SR Flip-Flop

What is the value of Q if:
* S=1andR=0? = Qissurely1
= S=0andR=1? = Qissurely 0

= S=0andR=0? = QispossiblyO...or possibly 1!

36

SR Flip-Flop

What is the value of Q if:

* S=1andR=07? = Qissurely1

= S=0andR=1? = Qissurely 0

= S=0andR=0? = QispossiblyO...or possibly 1!

While S =R =0, Q remembers what it was the last time S or R was 1.

37

SR Flip-Flop

SR Flip-Flop.
= S=1,R=0(Set) = "Flips" bit on.

= S=0,R=1(Reset) = "Flops" bit off.
= S5=R=0 = Status quo.
= S=R=1 = Not allowed.
S — Q
Y
R

Implementation

SR flip flop
—S
Q—o

—R

Interface

38




Clock

Clock.
* Fundamental abstraction.
- regular on-off pulse
* From some oscillating device, possibly external.
* Synchronizes operations of different circuit elements.
* 16Hz clock means 1 billion pulses per second.

cycle time

S I I

39

How much does it Hert?

Frequency is inverse of cycle time.
* Expressed in hertz.

* Frequency of 1 Hz means that there is 1 cycle per second.

* Hence:
- 1 kilohertz (kHz) means 1000 cycles/sec.
- 1 megahertz (MHz) means 1 million cycles/sec.
- 1 gigahertz (6Hz) means 1 billion cycles/sec.
- 1 terahertz (THz) means 1 trillion cycles/sec.

By the way, no such thing as 1 *hert” !

Heinrich Rudolf Hertz
(1857-1894)

40

Clocked SR Flip-Flop

Clocked SR Flip-Flop.
* Same as SR flip-flop except S and R only active when clock is 1.

SR flip flop Clocked
s 4_._ s SR Flip flop
. —s
clk— Q— - .
—ck Q@
» — D)8 —1r
Implementation Interface

ck || l | I I |

41

Clocked D Flip-Flop

Clocked D Flip-Flop.
* Output follows D input while clock is 1.
= Output is remembered while clock is O.

Clocked
SR flip flop Clocked
D s D flip flop
D —
cl clk Q ©
—>clk
»—nr
Implementation Interface

Q| L] .
ck || | | I I |
b L] |

42




Summary

Combinational circuits implement Boolean functions

* Gates and wires Fundamental building blocks.
* Truth tables. Describe Boolean functions.
* Sum-of-products. Systematic method to implement functions.

Sequential circuits add "state" o digital hardware.
* Flip-flop. Represents 1 bit.
= TOY register. 16 D flip-flops.
* TOY main memory. 256 registers.

Next time: we build a complete TOY computer (oh yes).

43

George Boole (1815 - 1864) Claude Shannon (1916 - 2001)

44




