2.3 Recursion
Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?

• New mode of thinking.
• Powerful programming paradigm.

Many computations are naturally self-referential.

• Binary search, mergesort, FFT, GCD.
• Linked data structures.
• A folder contains files and other folders.

Closely related to mathematical induction.
Mathematical induction. Prove a statement involving an integer N by

- **base case:** Prove it for some specific N (usually 0 or 1).
- **induction step:** Assume it to be true for all positive integers less than N, use that fact to prove it for N.

Ex. Sum of the first N odd integers is N^2.

Base case: True for $N = 1$.

Induction step:

- Let $T(N)$ be the sum of the first N odd integers: $1 + 3 + 5 + \ldots + (2N - 1)$.
- Assume that $T(N-1) = (N-1)^2$.
- $T(N) = T(N-1) + (2N - 1)$

 $= (N-1)^2 + (2N - 1)$

 $= N^2 - 2N + 1 + (2N - 1)$

 $= N^2$
Recursive Program. Implement a function having integer arguments by

- **base case**: Do something specific in response to “base” argument values.
- **reduction step**: Assume the function works for all smaller argument values, and use the function to implement itself for general argument values.

```java
public static String convert(int x) {
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}
```

Ex 1. Convert positive int to binary String.

Base case: return “1” for $x = 1$.

Reduction step:

- convert $x/2$ to binary
- append “0” if x even
- append “1” if x odd

\[
37 \rightarrow 18 \rightarrow "100101" = "10010" + "1"
\]
Recursive Program. Implement a function having integer arguments by
• base case: Implementing it for some specific values of the arguments.
• reduction step: Assume the function works for smaller values of its
 arguments and use it to implement the function for the given values.

```java
public class Binary {
    public static String convert(int x) {
        if (x == 1) return "1";
        return convert(x/2) + (x % 2);
    }
    public static void main(String[] args) {
        int x = Integer.parseInt(args[0]);
        System.out.println(convert(x));
    }
}
```

% java Binary 6 110
% java Binary 37 100101
% java Binary 999999 1111010001000111111
public class Binary {

 public static String convert(int x) {
 if (x == 1) return "1";
 return convert(x / 2) + (x % 2);
 }

 public static void main(String[] args) {
 int x = Integer.parseInt(args[0]);
 System.out.println(convert(x));
 }
}

% java Binary 6
110
Recursion vs. Iteration

Every program with 1 recursive call corresponds to a loop.

```
public static String convert(int x) {
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}

public static String convertNR(int x) {
    String s = "1";
    while (x > 1) {
        s = (x % 2) + s;
        x = x/2;
    }
    return s;
}
```

Reasons to use recursion:
• code more compact
• easier to understand
• easier to reason about correctness
• easy to add multiple recursive calls (stay tuned)

Reasons not to use recursion: (stay tuned)
Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. $\text{gcd}(4032, 1272) = 24$.

\[
\begin{align*}
4032 & = 2^6 \times 3^2 \times 7^1 \\
1272 & = 2^3 \times 3^1 \times 53^1 \\
\text{gcd}(4032, 1272) & = 2^3 \times 3^1 = 24
\end{align*}
\]

Applications.

- Simplify fractions: $1272/4032 = 53/168$.
- RSA cryptosystem.
Greatest Common Divisor

GCD. Find largest integer that evenly divides into p and q.

Euclid’s algorithm. [Euclid 300 BCE]

\[
gcd(p, q) = \begin{cases}
p & \text{if } q = 0 \\
gcd(q, p \mod q) & \text{otherwise} \\
\end{cases}
\]

\[
gcd(4032, 1272) = gcd(1272, 216) \\
= gcd(216, 192) \\
= gcd(192, 24) \\
= gcd(24, 0) \\
= 24.
\]

4032 = 3 × 1272 + 216
Euclid’s Algorithm

GCD. Find largest integer \(d \) that evenly divides into \(p \) and \(q \).

\[
gcd(p, q) = \begin{cases}
p & \text{if } q = 0 \\
gcd(q, p \% q) & \text{otherwise}
\end{cases}
\]

- **Base case:** \(q = 0 \)
- **Reduction step:** converges to base case

<table>
<thead>
<tr>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(q)</th>
<th>(q)</th>
<th>(p % q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
</tbody>
</table>

\(p = 8x \)
\(q = 3x \)

\[
gcd(p, q) = gcd(3x, 2x) = x
\]
Euclid's Algorithm

GCD. Find largest integer d that evenly divides into p and q.

\[
\text{gcd}(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 \text{gcd}(q, p \% q) & \text{otherwise}
\end{cases}
\]

Recursive program

```java
public static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```

- base case
- reduction step, converges to base case
public class Euclid {
 public static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }
 public static void main(String[] args) {
 int p = Integer.parseInt(args[0]);
 int q = Integer.parseInt(args[1]);
 System.out.println(gcd(p, q));
 }
}
Possible debugging challenges with recursion

Missing base case.

public static double BAD(int N) {
 return BAD(N-1) + 1.0/N;
}

No convergence guarantee.

public static double BAD(int N) {
 if (N == 1) return 1.0;
 return BAD(1 + N/2) + 1.0/N;
}

Both lead to INFINITE RECURSIVE LOOP (bad news).

Try it! so that you can recognize and deal with it if it later happens to you
Collatz Sequence

Collatz sequence.
- If n is 1, stop.
- If n is even, divide by 2.
- If n is odd, multiply by 3 and add 1.

Ex. 35 106 53 160 80 40 20 10 5 16 8 4 2 1.

```java
public static void collatz(int N) {
    StdOut.print(N + " ");
    if (N == 1) return;
    if (N % 2 == 0) collatz(N / 2);
    else collatz(3 * N + 1);
}
```

No one knows whether or not this function terminates for all N (!) [usually we decrease N for all recursive calls]
Htree

H-tree of order n.

- Return if \(n \) is 0
- Draw an \(H \).
- Recursively draw 4 \(H \)-trees of order \(n-1 \), one connected to each tip.

![Diagram of H-tree orders](image)

- **order 1**
- **order 2**
- **order 3**
public class Htree
{
 public static void draw(int n, double sz, double x, double y)
 {
 if (n == 0) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;

 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1); ← draw the H, centered on (x, y)
 StdDraw.line(x1, y0, x1, y1);

 draw(n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1);
 draw(n-1, sz/2, x1, y0);
 draw(n-1, sz/2, x1, y1);
 }

 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
 }
}
Animated H-tree

Animated H-tree. Pause after drawing each H.
Towers of Hanoi

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

• Only one disc may be moved at a time.

• A disc can be placed either on empty peg or on top of a larger disc.

Edouard Lucas (1883)
Towers of Hanoi: Recursive Solution

Move n-1 smallest discs right.

Move largest disc left.

cyclic wrap-around

Move n-1 smallest discs right.
Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
 • 64 golden discs on 3 diamond pegs.
 • World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?
public class TowersOfHanoi
{
 public static void moves(int n, boolean left)
 {
 if (n == 0) return;
 moves(n-1, !left);
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right");
 moves(n-1, !left);
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 moves(N, true);
 }
}
Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left

% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right

every other move is smallest disc

subdivisions of ruler
Towers of Hanoi: Recursion Tree

3, true

2, false

1, true

2, false

1, true

1, true

1 left

2 right

1 left

3 left

1 left

2 right

1 left

58
Remarkable properties of recursive solution.

- Takes $2^n - 1$ moves to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
 - move smallest disc to right if n is even
 - make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 585 billion years for $n = 64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!
Divide-and-Conquer

Divide-and-conquer paradigm.
- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
- Midpoint displacement method for fractional Brownian motion.
- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.

Divide et impera. Veni, vidi, vici. - Julius Caesar
Fibonacci Numbers
Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[
F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)
Fibonacci Numbers

pinecone

cauliflower

see much, much more at www.youtube.com/user/Vihart
A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases} \]

A natural for recursion?

public static long F(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

FYI (classical math):

\[F(n) = \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}} \]

\[\phi = \text{golden ratio} \approx 1.618 \]

Ex: \(F(50) \approx 1.2 \times 10^{10} \)
Recursion Challenge 1 (difficult but important)

Is this an efficient way to compute F(50)?

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```
Recursion Challenge 2 (easy and also important)

Is this an efficient way to compute $F(50)$?

```java
long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (n == 1) return 1;
for (int i = 2; i <= 50; i++)
    F[i] = F[i-1] + F[i-2];
```
Summary

How to write simple recursive programs?
• Base case, reduction step.
• Trace the execution of a recursive program.
• Use pictures.

Why learn recursion?
• New mode of thinking.
• Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Exponential time.
• Easy to specify recursive program that takes exponential time.
• Don’t do it unless you plan to (and are working on a small problem).