
1.4 Arrays

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

conditionals and loops

!
!
!

any program you might want to write

store and manipulate
huge quantities of dataarrays

Math text I/O

assignment statementsprimitive data types

2

This lecture. Store and manipulate huge quantities of data.
!
Array. Indexed sequence of values of the same type.
!
Examples.

• 52 playing cards in a deck.

• 5 thousand undergrads at Princeton.

• 1 million characters in a book.

• 10 million audio samples in an MP3 file.

• 4 billion nucleotides in a DNA strand.

• 1.3 trillion Google queries per year.

• 50 trillion cells in the human body.

• 6.02 × 1023 particles in a mole.

Arrays

doug0

maia1

dgabai2

dan.leyzberg3

ak184

sty25

nkang6

nhli7

index value

stcook8

mojgan9

jgossels10

bj611

jlisrael12 stevenag

sgrover13

3

espeters14

fulus15

jlisrael16 shurans

hasdemir17
3

cararat18

Many Variables of the Same Type

Goal. 10 variables of the same type.

// Tedious and error-prone code.
double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
a0 = 0.0;
a1 = 0.0;
a2 = 0.0;
a3 = 0.0;
a4 = 0.0;
a5 = 0.0;
a6 = 0.0;
a7 = 0.0;
a8 = 0.0;
a9 = 0.0;
...
a4 = 3.0;
...
a8 = 8.0;
...
double x = a4 + a8;

4

Many Variables of the Same Type

Goal. 10 variables of the same type (e.g.).

// Easy alternative.
double[] a = new double[10];
...
a[4] = 3.0;
...
a[8] = 8.0;
...
double x = a[4] + a[8];

declares, creates, and initializes
[stay tuned for details]

5

Many Variables of the Same Type

Goal. 1 million variables of the same type.

// Scales to handle large arrays.
double[] a = new double[1000000];
...
a[234567] = 3.0;
...
a[876543] = 8.0;
...
double x = a[234567] + a[876543];

6

Arrays in Java

Java has special language support for arrays.

• To make an array: declare, create, and initialize it.

• To access element i of array named a, use a[i].

• Array indices start at 0.
!
!
!
!
!

Compact alternatives: Declare, create, and initialize in one statement.

• Default: all entries automatically set to 0.
!
!

• Initialize to literal values

double[] a = new double[1000];

double[] x = { 0.3, 0.6, 0.1 };

int N = 1000;
double[] a; // declare the array
a = new double[N]; // create the array
for (int i = 0; i < N; i++) // initialize the array
 a[i] = 0.0; // all to 0.0

double[] x = new double[3];  !
x[0] = 0.3; x[1] = 0.6; x[2] = 0.1;

compact version equivalent code

8

Sample Array Code: Vector Dot Product

Dot product. Given two vectors x[] and y[] of length N, their dot product is
the sum of the products of their corresponding components.

double[] x = { 0.3, 0.6, 0.1 };
double[] y = { 0.5, 0.1, 0.4 };

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += x[i] * y[i];

i x[i] y[i] x[i]*y[i] sum

0

0 .30 .50 .15 .15

1 .60 .10 .06 .21

2 .10 .40 .04 .25

.25

9

Array Processing Examples

double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = Math.random();

create an array with N random values

double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++)
 if (a[i] > max) max = a[i];

find the maximum of the array values

for (int i = 0; i < N; i++)
 System.out.println(a[i]);

print the array values, one per line

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

compute the average of the array values

double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

copy to another array

for (int i = 0; i < N/2; i++)
{
 double temp = b[i];
 b[i] = b[N-i-1];
 b[N-i-1] = temp;
}

reverse the elements within the array

10

public class Gambler {
 public static void main(String[] args) {
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int trials = Integer.parseInt(args[2]);
 . . . !
 . . . !
 } !
} !
!
!

!
!
!
!
!
!
!
!
!

Mumbo-Jumbo Demystification, Part 1

11

Shuffling a Deck

Setting Array Values at Compile Time

Ex. Print a random card.

String[] rank =
{
 "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "Jack", "Queen", "King", "Ace"
};

!
String[] suit =
{
 "clubs", "diamonds", "hearts", "spades"
};
!
int i = (int) (Math.random() * 13); // between 0 and 12
int j = (int) (Math.random() * 4); // between 0 and 3
!
System.out.println(rank[i] + " of " + suit[j]);

14

Setting Array Values at Compile Time

Want to initialize a whole deck? How about this:

String[] deck =
{
 "2 of clubs", "3 of clubs", "4 of clubs", "5 of clubs",
 "6 of clubs", "7 of clubs", "8 of clubs", "9 of clubs",
 "10 of clubs", "Jack of clubs", "Queen of clubs",
 "King of clubs", "Ace of clubs", "2 of diamonds",
 "3 of diamonds", "4 of diamonds", "5 of diamonds",
 "6 of diamonds", "7 of diamonds", "8 of diamonds",
 "9 of diamonds", "10 of diamonds", "Jack of diamonds",
 "Queen of diamonds", "King of diamonds", "Ace of diamonds",
 "2 of hearts", "3 of hearts", "4 of hearts", "5 of hearts",
 "6 of hearts", "7 of hearts", "8 of hearts", "9 of hearts",
 "10 of hearts", "Jack of hearts", "Queen of hurts",
 "King of hearts", "Ace of hearts", "2 of spades",
 "3 of spades", "4 of spades", "5 of spades",
 "6 of spades", "7 of spades", "8 of spades", "9 of spades",
 "10 of spades", "Jack of spades", "Queen of spades",
 "King of spades", "Ace of spades",
};

15

Setting Array Values at Run Time

This method saves ink: 
 

String[] rank = { "2", "3" ..., "King", "Ace" };
String[] suit =  
 { "clubs", "diamonds", "hearts", "spades" };
!
String[] deck = new String[52];
for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[4*i + j] = rank[i] + " of " + suit[j];
!
for (int i = 0; i < 52; i++)
 System.out.println(deck[i]);

typical array
processing code
changes values

at runtime

16

Array Challenge 1

The following code sets array values to the 52 card values and prints them.
In which order are they printed?  
 

String[] rank = { "2", "3" ..., "King", "Ace" };
String[] suit =  
 { "clubs", "diamonds", "hearts", "spades" };
!
String[] deck = new String[52];
for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[4*i + j] = rank[i] + " of " + suit[j];
!
for (int i = 0; i < 52; i++)
 System.out.println(deck[i]);

B. 2 of clubs
3 of clubs
4 of clubs
5 of clubs
6 of clubs
...

2 of clubs
2 of diamonds
2 of hearts
2 of spades
3 of clubs
...

A.

typical array
processing code
changes values

at runtime

17

Array Challenge 2

Swap the for statements: rank index in inner loop, suit index in outer loop.
Now, in which order are they printed? 
 

String[] rank = { "2", "3" ..., "King", "Ace" };
String[] suit =  
 { "clubs", "diamonds", "hearts", "spades" };
!
String[] deck = new String[52];
for (int j = 0; j < 4; j++)
 for (int i = 0; i < 13; i++)
 deck[4*i + j] = rank[i] + " of " + suit[j];
!
for (int i = 0; i < 52; i++)
 System.out.println(deck[i]);

B. 2 of clubs
3 of clubs
4 of clubs
5 of clubs
6 of clubs
...

2 of clubs
2 of diamonds
2 of hearts
2 of spades
3 of clubs
...

A.

these lines swapped
from previous slide

19

Array Challenge 3

The following code sets array values to the 52 card values and prints them.
What change to the code will produce the “B” order ? 

String[] rank = { "2", "3" ..., "King", "Ace" };
String[] suit =  
 { "clubs", "diamonds", "hearts", "spades" };
!
String[] deck = new String[52];
for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[4*i + j] = rank[i] + " of " + suit[j];
!
for (int i = 0; i < 52; i++)
 System.out.println(deck[i]);

B. 2 of clubs
3 of clubs
4 of clubs
5 of clubs
6 of clubs
...

2 of clubs
2 of diamonds
2 of hearts
2 of spades
3 of clubs
...

A.

21

Shuffling

Goal. Given an array, rearrange its elements in random order.
!
Shuffling algorithm.

• In iteration i, pick random card from deck[i] through deck[N-1], with
each card equally likely.

• Exchange it with deck[i].

int N = deck.length;
for (int i = 0; i < N; i++)
{
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[r];
 deck[r] = deck[i];
 deck[i] = t;
}

between i and N-1swap 
idiom

23

Shuffle an Array

Shuffle a deck of cards.

• In ith iteration, put a random element from remainder of deck at index i.
– choose random integer r between i and N-1
– swap values in positions r and i

4♣ 5♣ 6♣ 7♣2♣ 3♣ 10♣ J♣Value 8♣ 9♣

2 3 4 50 1 8 9Array index 6 7

9♣ 2♣

random integer = 7

24

Shuffle an Array

Shuffle a deck of cards.

• In ith iteration, put a random element from remainder of deck at index i.
– choose random integer r between i and N-1
– swap values in positions r and i

J♣ 4♣ 8♣ 3♣9♣ 5♣ 6♣ 2♣Value 10♣ 7♣

2 3 4 50 1 8 9Array index 6 7

34

Shuffling a Deck of Cards

public class Deck
{
 public static void main(String[] args)
 {
 String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };
 String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "Jack", "Queen", "King", "Ace" };
 int SUITS = suit.length;
 int RANKS = rank.length;
 int N = SUITS * RANKS;
!
! String[] deck = new String[N];
 for (int i = 0; i < RANKS; i++)
 for (int j = 0; j < SUITS; j++)
 deck[SUITS*i + j] = rank[i] + " of " + suit[j];
!
 for (int i = 0; i < N; i++)
 {
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[r];
 deck[r] = deck[i];
 deck[i] = t;
 }
!! for (int i = 0; i < N; i++)
 System.out.println(deck[i]);
 }
}

avoid "hardwired" constants like 52, 4, and 13.

build the deck

shuffle

print shuffled deck

35

Shuffling a Deck of Cards

% java Deck
5 of Clubs
Jack of Hearts
9 of Spades
10 of Spades
9 of Clubs
7 of Spades
6 of Diamonds
7 of Hearts
7 of Clubs
4 of Spades
Queen of Diamonds
10 of Hearts
5 of Diamonds
Jack of Clubs
Ace of Hearts
...
5 of Spades

% java Deck
10 of Diamonds
King of Spades
2 of Spades
3 of Clubs
4 of Spades
Queen of Clubs
2 of Hearts
7 of Diamonds
6 of Spades
Queen of Spades
3 of Spades
Jack of Diamonds
6 of Diamonds
8 of Spades
9 of Diamonds
...
10 of Spades

36

Coupon Collector

Coupon Collector Problem

Coupon collector problem. Given N different card types, how many 
do you have to collect before you have (at least) one of each type?
!
!
!
!
Simulation algorithm. Repeatedly choose an integer i between 0 and N-1.  
Stop when we have at least one card of every type.
!
!

Q. How to check if we've seen a card of type i?
A. Maintain a boolean array so that found[i] is true if we've already 
 collected a card of type i.

assuming each possibility is equally 
likely for each card that you collect

38

Coupon Collector: Java Implementation

public class CouponCollector
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int cardcnt = 0; // number of cards collected
 int valcnt = 0; // number of distinct cards seen so far

 // Do simulation.
 boolean[] found = new boolean[N];
 while (valcnt < N)
 {
 int val = (int) (Math.random() * N);
 cardcnt++;
 if (!found[val])
 {
 valcnt++;
 found[val] = true;
 }
 }
!
 // all N distinct cards found
 System.out.println(cardcnt);
 }
}

type of next card 
(between 0 and N-1)

39

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Challenge. Debugging with arrays requires tracing many variables.

val
found

valcnt cardcnt
0 1 2 3 4 5

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10

40

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many do
you have to collect before you have (at least) one of each type?
!
Fact. About N (1 + 1/2 + 1/3 + … + 1/N) ~ N ln N
!
!
!
Ex. N = 30 baseball teams. Expect to wait ≈ 120 years before all teams win
a World Series. under idealized assumptions

see ORF 245 or COS 341

41

Coupon Collector: Scientific Context

Q. Given a sequence from nature, does it have same characteristics 
as a random sequence?
!
A. No easy answer - many tests have been developed.
!
Coupon collector test. Compare number of elements that need to be
examined before all values are found against the corresponding answer for a
random sequence.

42

Multidimensional Arrays

Two Dimensional Arrays

Two dimensional arrays.

• Table of data for each experiment and outcome.

• Table of grades for each student and assignments.

• Table of grayscale values for each pixel in a 2D image.
!

Mathematical abstraction. Matrix.
Java abstraction. 2D array.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

45

Two Dimensional Arrays in Java

Declare, create, initialize. Like 1D, but add another pair of brackets.
!
!
!
!
Array access.  
 Use a[i][j] to access entry in row i and column j.  
 Both indices start at 0.
!
Initialize.
 This code is implicit (sets all entries to 0).
!
!
!
Warning. This implicit code might slow down your program for very big arrays.

for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = 0.0;

int M = 10;  
int N = 3;  
double[][] a = new double[M][N]; a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

a[3][0] a[3][1] a[3][2]

a[4][0] a[4][1] a[4][2]

a[5][0] a[5][1] a[5][2]

a[6][0] a[6][1] a[6][2]

a[7][0] a[7][1] a[7][2]

a[8][0] a[8][1] a[8][2]

a[9][0] a[9][1] a[9][2]

A 10-by-3 array

a[][]

a[6]

46

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

 double[][] p =
 {
 { .92, .02, .02, .02, .02 },
 { .02, .92, .32, .32, .32 },
 { .02, .02, .02, .92, .02 },
 { .92, .02, .02, .02, .02 },
 { .47, .02, .47, .02, .02 },
 };

47

.70 .20 .10

.30 .60 .10

.50 .10 .40

Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c  
to be the N-by-N matrix where c[i][j] is the sum a[i][j] + b[i][j].

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 c[i][j] = a[i][j] + b[i][j];

.80 .30 .50

.10 .40 .10

.10 .30 .40

1.5 .50 .60
.40 1.0 .20
.60 .40 .80

a[][]

b[][]

c[][]

a[1][2]

b[1][2]

c[1][2]

.10

.10

.20

48

c[1][2] = .3 *.5

 +.6 *.1

 +.1 *.4

 = .25

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c  
to be the N-by-N matrix where c[i][j] is the dot product of  
the ith row of a and the jth column of b.

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

all values initialized to 0

.70 .20 .10

.30 .60 .10

.50 .10 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42

a[][]

b[][]

c[][]

row 1

column 2

.30 .60 .10

.25

.80 .30 .50

.10 .40 .10

.10 .30 .40

.50

.10

.40

49

 Array Challenge 4

How many multiplications to multiply two N-by-N matrices? 

!
!
!
!
A. N
!
B. N2

!
C. N3

!
D. N4
 

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

50

Application: 2D Random Walks

Application: Self-Avoiding Walks

53

Self-Avoiding Walk

Model.

•N-by-N lattice.

• Start in the middle.

• Randomly move to a neighboring intersection,  
avoiding all previously visited intersections.

• Two possible outcomes: escape and dead end
!

!
!
Applications. Polymers, statistical mechanics, etc.
!

!
Q. What fraction of time will you escape in an 5-by-5 lattice?
Q. In an N-by-N lattice?
Q. In an N-by-N-by-N lattice?

dead end

escape

54

Self-Avoiding Walk: Implementation

public class SelfAvoidingWalk
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]); // lattice size
 int T = Integer.parseInt(args[1]); // number of trials
 int deadEnds = 0; // trials ending at dead end
!
 for (each trial)
 {
 boolean[][] a = new boolean[N][N]; // intersections visited
 int x = N/2, y = N/2; // current position
!
 while (you’re still inside the lattice)
 {

 if (you’re at a dead end)
 { deadEnds++; break; }
!
 a[x][y] = true; // mark as visited
!
 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }
 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

take a random
step to a new
intersection

dead end

55

Self-Avoiding Walk: Implementation

public class SelfAvoidingWalk
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]); // lattice size
 int T = Integer.parseInt(args[1]); // number of trials
 int deadEnds = 0; // trials ending at dead end
!
 for (int t = 0; t < T; t++)
 {
 boolean[][] a = new boolean[N][N]; // intersections visited
 int x = N/2, y = N/2; // current position
!
 while (x > 0 && x < N-1 && y > 0 && y < N-1)
 {

 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])
 { deadEnds++; break; }
!
 a[x][y] = true; // mark as visited
!
 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }
 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

take a random
step to a new
intersection

dead end

56

Self-Avoiding Walks

% java SelfAvoidingWalk 10 100000
5% dead ends
% java SelfAvoidingWalk 20 100000
32% dead ends
% java SelfAvoidingWalk 30 100000
58% dead ends
% java SelfAvoidingWalk 40 100000
77% dead ends
% java SelfAvoidingWalk 50 100000
87% dead ends
% java SelfAvoidingWalk 60 100000
93% dead ends
% java SelfAvoidingWalk 70 100000
96% dead ends
% java SelfAvoidingWalk 80 100000
98% dead ends
% java SelfAvoidingWalk 90 100000
99% dead ends
% java SelfAvoidingWalk 100 100000
99% dead ends

0%

25%

50%

75%

100%

10 20 30 40 50 60 70 80 90 100

57

Summary

Arrays.

•Organized way to store huge quantities of data.

• Almost as easy to use as primitive types.

• You can directly (and very quickly) access an element given its index.

• You can have as many dimensions as you like !
!

Caveats:

•Need to fix size of array ahead of time.

• Don't forget to allocate memory with new.

• Indices start at 0 not 1.

•Out-of-bounds to access a[-1] or a[N] of N element array.
– in Java: ArrayIndexOutOfBoundsException
– in C: "ghastly error"

Ahead. Reading in large quantities of data from a file into an array.

58

