COS126 Programming Exam 2 (Spring 2015)

Instructions. This exam is like a mini programming assignment. You will have 90 minutes
to create several programs. Debug your code as needed. You may use your book, your
notes, your code from programming assignments, the code on the COS 126 course website,
the booksite, and you may read Piazza. No form of communication is permitted (e.g.,
talking, email, IM, texting, cell phones) during the exam. When you are done, submit your

program via the course website using the submit link on the “Assignments” page.

Grading. Your program will be graded on correctness, clarity (including comments),
design, and efficiency. You will lose a substantial number of points if your program does

not compile or does not have the proper API, or if it crashes on typical inputs.

This paper. In addition to submitting your code electronically, you must turn in this paper.

Print your name, login, and precept on this page. Copy and sign the Honor Code pledge.

Discussing this exam. As you know, discussing the contents of this exam before solutions
have been posted is a serious violation of the Honor Code.

NAME:

LOGIN:

PRECEPT:

“l pledge my honor that | have not violated the Honor Code during this examination.”

SIGNATURE:

Part 1. Diamond.java (10 points)

Create a class that represents a two-dimensional diamond using the following API.

public class Diamond Diamonds

Diamond (double r, double x, // creates a Diamond object of
double y, Color c) // radius r, centered at (x, Yy)
// color c but does not draw it

void drawFilled() // sets the pen color & draws
// the diamond using StdDraw

double area() // returns area of the diamond
where area = 2 * r?

/1 The coordinates of
void changeColor (Color c) // changes the color, but the points of a

// does not draw the diamond . .

diamond are r units
void move(double deltaX, // changes (x, y) by deltaX and from the center

double deltay) // delta¥Y respectively, but

// does not draw the diamond

point (X, y).

Remember to put import java.awt.Colorj; at the beginning of your program.

Use this main() method to test your code. Further Run your program in Drjava. You
testing is strongly recommended but not required. should get the following output:
public static void main(String[] args) { > java Diamond
StdDraw.setXscale(-1, 1); // set scale 0.5
StdDraw.setYscale(-1, 1); // in main() 0.5
Color red = StdDraw.RED;
Diamond d = new Diamond(.5, -.5, .5, red);

d.drawFilled();
System.out.println(d.area());
d.changeColor (StdDraw.BLUE) ;
d.move(l, -1);
d.drawFilled();
System.out.println(d.area());

You can download this main() code at the following URL:

http://www.cs.princeton.edu/~cos126/docs/data/Ngon

Part 2. Ngon.java (15 points)

Create a class that represents a two-dimensional N-sided regular polygon using the following API.

public class Ngon Regular Polygons
Ngon(int n, double r, // n-sided polygon, radius r,

double x, double y, // center (x, y), color c

Color c¢)
Ngon(int n, double r) // as above, except centered at

// (0, 0) & color StdDraw.BLACK Interior angle, in radians:

angle =2 * pi / # of sides

void drawFilled() // sets pen color & draws Ngon
double area() // area of Ngon = (1/2) * (r?) Coordinatis oft.h*e poinis:
// * (# of sides) x sin(angle) Xp=X+r CQ“} angle)
y; =y +r*sin(i * angle)
Ngon merge(Ngon that) // merges w/ an Ngon (see below) whereiis0, 1, ..., N-1

The merge () method creates a new (bigger) Ngon such that:

- The radius of the new Ngon is sum of the two radii.
- The center point coordinates (x, y) are the averages of the x and y values respectively.
- The color RGB values are the averages of the R, G, and B values respectively.

Note, merge () must return null if the two Ngons have different numbers of sides.

We provide an example below, in which a red hexagon is merged with a blue hexagon.

Use this main() method to test your code. Further Run your program in Drjava. You

testing is strongly recommended but not required. should get the following output:

public static void main(String[] args) { > java Ngon
StdDraw.setXscale(-1, 1); // set scale 0.9353074360871938

StdDraw.setYscale(-1, 1); // in main()
Color red = StdDraw.RED;

Color blue = StdDraw.BLUE;
Ngon hl = new Ngon(6, .3, -.6, .6, red);
Ngon h2 = new Ngon(6, .3, .6, -.6, blue);

Ngon h3 = hl.merge(h2);
hl.drawFilled();
h2.drawFilled();
h3.drawFilled();

System.out.println(h3.area()); .
}

You can download this code at the URL provided in Part 1.

Part 3. NgonArt.java (5 points)

Create a client for Ngon that reads the parameters of some Ngons from Stdin and plots them in

descending order of area (i.e., plots the Ngon with the largest area first).

You may write your own private methods to help you accomplish this goal, or you may write your
entire program in main (). To simplify your task, assume that no two Ngons will have exactly the

same area.
As you did in the previous parts, set the scale to (-1, 1) for both axes.

You can download the following sample input files at the URL provided in Part 1.

The file 3gon.txt contains 3 Ngons: The file cos126gon.txt contains 478 Ngons:
3 478
6 0.8 0.0 0.0 2550 0 3 0.07617048 -0.74 -0.84 47 10 180
4. 0.4 -0.4 -0.4 127 0 127 3 0.07334798 -0.60 -0.84 32 187 158
50.6 -0.2 -0.10 0 255 ««. and many more ...

Run your program from the command line. Run your program from the command line.

You should get the following output: You should get the following output:

> java-introcs NgonArt < 3gon.txt > java-introcs NgonArt < cosl26gon.txt

Note: You may not use java.util.*

