
COS 126 –
Atomic Theory of Matter

Goal of the Assignment

 Calculate Avogadro’s number

 Using Einstein’s equations

 Using fluorescent imaging

 Input data

 Sequence of images

 Each image is a rectangle of pixels

 Each pixel is either light or dark

 Output

 Estimate of Avogadro’s number

Assignment: Four Programs

 Blob data type

 Maximal set of connected light pixels

 BlobFinder

 Find all blobs in a JPEG image

 List all the big blobs (aka beads)

 BeadTracker

 Track beads from one image to the next

 Avogadro

 Data analysis to estimate Avogadro’s
number from the motion of beads

Atomic Theory Overview

 Brownian Motion

 Random collision of molecules

 Displacement over time fits a Gaussian
distribution

Atomic Theory Overview

 Avogadro’s Number

 Number of atoms needed to equal
substance’s atomic mass in grams

 NA atoms of Carbon-12 = 12 grams

 Can calculate from Brownian Motion

 Variance of Gaussian distribution is a function
of resistance in water, number of molecules

Blob.java

 API for representing particles (blobs) in water
 public Blob()

 public void add(int i, int j)

 public int mass() // number of pixels

 public double distanceTo(Blob b) // from center (average)

 public String toString()

 Only need three values to efficiently store
 Do not store the positions of every pixel in the blob

Center of mass,
and # of pixels

Blob Challenges

 Format numbers in a nice way
 String.format("%2d (%8.4f, %8.4f)",

mass, cx, cy);

 (Use same format in System.out.printf())

 E.g., "%6.3f" -> _2.354

 E.g., "%10.4e" -> 1.2535e-23

 Thoroughly test
 Create a simple main()

BlobFinder.java

 Locate all blobs in a given image

 And identify large blobs (called beads)

 API

 public BlobFinder(Picture picture, double threshold)

 Calculate luminance (see Luminance.java, 3.1)

 Include pixels with a luminance >= threshold

 Find blobs with DFS (see Percolation.java, 2.4)

 The hard part, next slide…

 public Blob[] getBeads(int minSize)

 Returns all beads with at least minSize pixels

 Array must be of size equal to number of beads

BlobFinder - Depth First Search

 Use boolean[][] array to mark visited

 Traverse image pixel by pixel
 Dark pixel

 Mark as visited, continue

 Light pixel
 Create new blob, call DFS

 DFS algorithm
 Base case: simply return if

 Pixel out-of-bounds

 Pixel has been visited

 Pixel is dark (and mark as visited)

 Add pixel to current blob, mark as visited

 Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search

 Use boolean[][] array to mark visited

 Traverse image pixel by pixel
 Dark pixel

 Mark as visited, continue

 Light pixel
 Create new blob, call DFS

 DFS algorithm
 Base case: simply return if

 Pixel out-of-bounds

 Pixel has been visited

 Pixel is dark (and mark as visited)

 Add pixel to current blob, mark as visited

 Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search

 Use boolean[][] array to mark visited

 Traverse image pixel by pixel
 Dark pixel

 Mark as visited, continue

 Light pixel
 Create new blob, call DFS

 DFS algorithm
 Base case: simply return if

 Pixel out-of-bounds

 Pixel has been visited

 Pixel is dark (and mark as visited)

 Add pixel to current blob, mark as visited

 Recursively visit up, down, left, and right neighbors

 Use boolean[][] array to mark visited

 Traverse image pixel by pixel
 Dark pixel

 Mark as visited, continue

 Light pixel
 Create new blob, call DFS

 DFS algorithm
 Base case: simply return if

 Pixel out-of-bounds

 Pixel has been visited

 Pixel is dark (and mark as visited)

 Add pixel to current blob, mark as visited

 Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search

BlobFinder - Depth First Search

 Use boolean[][] array to mark visited

 Traverse image pixel by pixel
 Dark pixel

 Mark as visited, continue

 Light pixel
 Create new blob, call DFS

 DFS algorithm
 Base case: simply return if

 Pixel out-of-bounds

 Pixel has been visited

 Pixel is dark (and mark as visited)

 Add pixel to current blob, mark as visited

 Recursively visit up, down, left, and right neighbors

 Use boolean[][] array to mark visited

 Traverse image pixel by pixel
 Dark pixel

 Mark as visited, continue

 Light pixel
 Create new blob, call DFS

 DFS algorithm
 Base case: simply return if

 Pixel out-of-bounds

 Pixel has been visited

 Pixel is dark (and mark as visited)

 Add pixel to current blob, mark as visited

 Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search

BlobFinder Challenges

 Data structure for the collection of
blobs

 Store them any way you like

 But be aware of memory use and timing

BlobFinder Challenges

 Data structure for the collection of blobs

 Store them any way you like

 But be aware of memory use and timing

 Array of blobs?

 But how big should the array be?

 Linked list of blobs?

 Memory efficient, but harder to implement

 Avoid traversing whole list to add a blob!

 Anything else?

 Submit your (extra) object classes if not in 4.3

BeadTracker.java

 Track beads between
successive images

 Single main function

 Take in a series of images

 Output distance traversed by
all beads for each time-step

 For each bead found at time t+1,
find closest bead at time t and
calculate distance

 Not the other way around!

 Don’t include if distance > 25
pixels (new bead)

BeadTracker Challenges

 Reading multiple input files

 java BeadTracker run_1/*.jpg

 Expands files in alphabetical order

 End up as args[0], args[1], …

 Avoiding running out of memory

 How?

 Recompiling

 Recompile if Blob or BlobFinder change

BeadTracker Challenges

 Reading multiple input files

 java BeadTracker run_1/*.jpg

 Expands files in alphabetical order

 End up as args[0], args[1], …

 Avoiding running out of memory

 Do not open all picture files at same time

 Only two need to be open at a time

 Recompiling

 Recompile if Blob or BlobFinder change

Avogadro.java

 Analyze Brownian motion of all
calculated displacements

 Lots of crazy formulas, all given, pretty
straightforward

 Be careful about units in the math, convert
pixels to meters, etc.

 Can test without the other parts working

 We provide sample input files

 Can work on it while waiting for help

Conclusion: Final Tips

 Avoiding subtle bugs in BlobFinder

 Double check what happens at corner
cases (e.g. at boundary pixels, or when
luminance == tau, or mass == cutoff)

 Common errors in BlobFinder

 NullPointerException

 StackOverflowError (e.g., if no base case)

 No output (need to add prints)

 Look at checklist Q&A

Conclusion: Final Tips

 Testing with a main()

 BlobFinder, BeadTracker, and Avogadro

 Must have a main() that can handle I/O
described in Testing section of checklist

 Timing analysis

 Look at feedback from earlier assignments

 BeadTracker is time sink, so analyze that

 How can you run 100 frames?

