4/7/13

COS 461
Recitation 7

Remote Procedure Calls

Let’s Look at Layers Again

The Seven Layers of OSI

N User .
Transmit Receive
B ettt 097
Session Layer
Transport Layer

—> Physical Link ——

Common Networked Application
Pattern

Buy X

OKAY

=
=

* APP1 sends message to APP2, expecting Reply
* Message has a static part and a dynamic part
* Similar to a function call!

* Static = function name

* Dynamic = function args

Remote Procedure Calls (RPCs)

* Not a particular “protocol”, rather a class of
application protocols
e Common Elements:
— Procedure names known a priori
— Arguments are fixed length, usually typed
— Often: Arguments supplied as plain code objects
— Protocols need to define:

* Message Format
* How to translate from code to message format




4/7/13

Remote Procedure Calls (RPCs)

* Are RPCs just like normal procedure calls?
— No!
— Calls traverse network: many possible problems /
exceptions

* Can't libraries abstract away the networking?
—NO!!

Trying to Abstract the Network

* Trying to mask failures is a Bad Thing ™

* Example: network timeout
— Do you retransmit automatically?

* Potential Solutions?

Using Nonces

* Nonce : unique-ish number

Receiver can tell if a message is repeated
What about responses to the client?

Can we guarantee the following?

— If a RPC is processed by the server, the client will
receive a successful response.

Let’s Look at Real RPC Protocols

Message Formats:
— XML and JSON
Protocols / Libraries
—Java RMI

— Google Protobufs




Common Message Formats

¢ XML and JSON most common “general formats”
— These are “string” formats
— (typically UTF-8 or even ASCII)
* XMLis horrible
<Message type="terribleRPCformat” version="1">
<procedure name="foo”>
<argument number="1" value="bar”>

</procedure>
</Message>

* Compare to just saying “foo(bar)”

— Message is longer, harder to parse, etc.

JSON is a bit better

¢ JSON has lists, values and “dictionaries”
* Looks like:

{“type”: “sillyRPCFormat”,

“procedure”: “Foo”,

“arguments”: [“bar”]

}

« Still kind of a silly format

— That’s what you get for string-based “object”
formats, though.

Java RMI

* Biggest Issue for Java Library:

— Allowing objects to be used in procedure calls
* Java Serializable

— POJOs in, Bytes out

— MAGIC?!

Java Serialization is not, as it turns out,

Magic.

* Marking class “Serializable” indicates that it is “okay
to serialize”

« Library inspects the object:

— For every field, attempt to serialize()

— Primitives, such as int and char, have hardcoded
serialization functions

— Write an “identifier” for the Object’s type.

* Includes Object’s fully-qualified name, and a
version

4/7/13



4/7/13

Default Java Serialization is Expensive

* The algorithm is not theoretically expensive

* However, crawling object reference graphs is
expensive in practice.

* This requires lots of indirect memory fetches, which
are not necessarily known by the library

e E.g., Object A may have an Object[] array. This array
can store arbitrary types!

— How much space would you need to allocate?

— What kind of Objects do you expect to need to
serialize?

Google Protobufs

¢ Programmers define the contents of the message

— Specify exactly what the output of the serialization
will be

— Allows for arrays — but these arrays must be of
single types

Programmers must also define exactly how objects

are translated

— There are automatic tools to help with this

* With the definition, the library optimizes the output,

packs it into a condensed binary format




