# Routing Recitation \#5 

## COS 461: Computer Networks Spring 2014

## Link State (Djikstra's)



# Which routing protocol requires the least amount of state on the router? 

a) link state
b) distance vector
c) path vector

Which routing protocol requires the least amount of state on the router?
a) link state
b) distance vector
c) path vector

Which of the following, if true, ensures packets from a to e always traverse c?


$$
\begin{array}{ll}
\text { A. } & Y>3 \\
\text { B. } & Y>X+1 \\
\text { C. } & Y>X \\
\text { D. } & \text { A or B }
\end{array}
$$

Which of the following, if true, ensures packets from a to e always traverse c?


$$
\begin{array}{ll}
\text { A. } & \mathrm{Y}>3 \\
\text { B. } & \mathrm{Y}>\mathrm{X}+1 \\
\text { C. } & \mathrm{Y}>\mathrm{X} \\
\text { D. } & \text { A or } \mathrm{B}
\end{array}
$$

Which of the following, if true, ensures packets from $b$ to e always traverse d?


$$
\begin{array}{ll}
\text { A. } & Y>2 \\
\text { B. } & Y>X+1 \\
\text { C. } & Y>X \\
\text { D. } & \text { A or B }
\end{array}
$$

Which of the following, if true, ensures packets from b to e always traverse d?


$$
\begin{array}{ll}
\text { A. } & Y>2 \\
\text { B. } & \mathbf{Y}>\mathbf{X}+\mathbf{1} \\
\text { C. } & Y>X \\
\text { D. } & \text { A or B }
\end{array}
$$

## Distance Vector Routing



Initial Routing table at E

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A |  |  |
| B |  |  |
| C |  |  |
| D |  |  |

## Distance Vector Routing



Initial Routing table at E

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | Inf | --- |
| B |  |  |
| C |  |  |
| D |  |  |

## Distance Vector Routing



Initial Routing table at E

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | Inf | --- |
| B | Inf | --- |
| C |  |  |
| D |  |  |

## Distance Vector Routing



Initial Routing table at E

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | Inf | --- |
| B | Inf | --- |
| C | 11 | C |
| D |  |  |

## Distance Vector Routing



Initial Routing table at E

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | Inf | --- |
| B | Inf | --- |
| C | 11 | C |
| D | 17 | D |

## Distance Vector Routing



## Routing table at E after one iteration

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | Inf | --- |
| B | Inf | --- |
| C | 11 | C |
| D | 17 | D |

## Distance Vector Routing



## Routing table at E after one iteration

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 32 | D |
| B | Inf | --- |
| C | 11 | C |
| D | 17 | D |

## Distance Vector Routing



## Routing table at E after one iteration

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 32 | D |
| B | 29 | C |
| C | 11 | C |
| D | 17 | D |

## Distance Vector Routing



Routing table at E after one iteration

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 32 | D |
| B | 29 | C |
| C | 11 | C |
| D | 17 | D |

## Distance Vector Routing



Routing table at E after one iteration

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 32 | D |
| B | 29 | C |
| C | 11 | C |
| D | 16 | C |

## Distance Vector Routing



Routing table at E after two iterations

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 32 | D |
| B | 29 | C |
| C | 11 | C |
| D | 16 | C |

## Distance Vector Routing



Routing table at E after two iterations

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 31 | C |
| B | 29 | C |
| C | 11 | C |
| D | 16 | C |

## Distance Vector Routing



Routing table at E after two iterations

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 31 | C |
| B | 28 | C |
| C | 11 | C |
| D | 16 | C |

## Distance Vector Routing



Routing table at E after two iterations

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 31 | C |
| B | 28 | C |
| C | 11 | C |
| D | 16 | C |

## Distance Vector Routing



Routing table at E after two iterations

| Destination | Cost | Next Hop |
| :--- | :--- | :--- |
| A | 31 | C |
| B | 28 | C |
| C | 11 | C |
| D | 16 | C |

## Distance Vector Routing



For what value of $x$ does the routing table at $E$ not change anymore after two iterations?
(a) For all $X>=2$
(b) For all $X>=3$
(c) For all $X \quad<=4$
(d) For all $X<=3$

## Distance Vector Routing



For what value of $x$ does the routing table at $E$ not change anymore after two iterations?
(a) For all $X>=2$
(b) For all $X>=3$
(c) For all X $<=4$
(d) For all X $<=3$
















## Routing Loops



If the link ( $c-e$ ) fails, and the nodes run a link-state routing protocol, can a temporary forwarding loop occur? If so, which node pairs may see their traffic loop?

## Routing Loops



Nodes $a, c, d$, and $e$ could potentially see their outgoing packets loop.
$a \rightarrow e$
c <-> e
$d \rightarrow c$

## Routing Loops



Suppose network operator Olivia decides to bring down the link c - e for maintenance. Olivia figures she can issue a series of link weight changes in the network to shift traffic away from c-e such that no temporary forwarding loops occur.
She's right; what series of changes to c-e's weight would achieve this?

## Routing Loops



Change c - e weight to 4.
a to e moves to $\mathrm{a}-\mathrm{b}$. c to e remains on $\mathrm{c}-\mathrm{e} . \quad \mathrm{c}$ to d ? $d$ to $c$ moves to $d-b$.
e to c remains on c-e.

## Routing Loops



Change c - e weight to 6.
c to e moves to $\mathrm{c}-\mathrm{a}$.
e to c moves to e-d.

No traffic left on c-e. Olivia can bring down the link.


Peer ----- Peer
Provider -> Customer

1. Which of the following paths to $d$ are valid?
(a) $b->a->d$
(b) $h->e->d$
(c) $f->e->d$
(d) $c->b->e->d$


Peer ----- Peer
Provider -> Customer

1. Which of the following paths to $d$ are valid?
(a) $b->a->d$
(b) $h->e->d$
(c) $f->e->d$
(d) $c->b->e->d$


Peer ----- Peer
Provider -> Customer
2. Which path does e take to reach i ?
(a) $e->h->i$
(b) $e->f->i$
(c) $e->b->c->f->i$
(d) $e->d->g->h->i$


Peer ----- Peer
Provider -> Customer
2. Which path does e take to reach i ?
(a) $e->h->i$
(b) $e->f->i$
(c) $e->b->c->f->i$
(d) $e->d->g->h->i$


Peer ----- Peer
Provider -> Customer
3. If the link e-f is removed then which path does e take to reach $i$ ?
(a) $e->h->i$
(b) $e->f->i$
(c) $e->b->c->f->i$
(d) $e->d->g->h->i$


Peer ----- Peer
Provider -> Customer
3. If the link e-f is removed then which path does e take to reach $i$ ?
(a) $e->h->i$
(b) $e->f->i$
(c) $e->b->c->f->i$
(d) $e->d->g->h->i$


```
Peer ----- Peer
Provider -> Customer
```

4. Suppose AS b provides a dump of all BGP routes they learn for every destination and we use them to reconstruct the AS-level topology, which of the following business relations will be missing ?
(a) $e->h$
(b) $e->f$
(c) $f->i$
(d) $d->g$
(e) $c->f$

```
Peer ----- Peer
Provider -> Customer
```

4. Suppose AS b provides a dump of all BGP routes they learn for every destination and we use them to reconstruct the AS-level topology, which of the following business relations will be missing ?
(a) $e->h$
(b) e->f
(c) $f->i$
(d) $d->g$
(e) $c->f$

```
Peer ----- Peer
Provider -> Customer
```

5. What is the minimum set of ASes that must provide "dumps" of every AS path they learn for every edge in the graph to be visible in at least one dump?
(a) a and h
(b) a and c
(c) a, b and h
(d) a, b and c
(e) h

```
Peer ----- Peer
Provider -> Customer
```

5. What is the minimum set of ASes that must provide "dumps" of every AS path they learn for every edge in the graph to be visible in at least one dump?
(a) a and h
(b) a and c
(c) a, b and h
(d) a, b and c
(e) $h$
6. BGP supports flexible routing policies. Internet Service Providers (ISPs) often have a "prefer customer" policy where they prefer to route through a customer, even if a shorter route exists through a peer or provider. Why? How is this policy realized in BGP?
7. BGP supports flexible routing policies. Internet Service Providers (ISPs) often have a "prefer customer" policy where they prefer to route through a customer, even if a shorter route exists through a peer or provider. Why? How is this policy realized in BGP?
```
Directing traffic through a customer generates revenue,
    whereas sending through a peer or provider is (at
    best) revenue neutral and may, in fact, cost money.
The policy is realized in BGP by having an import policy
    that assigns a higher local-preference value to
    routes learned from customer ASes.
```

