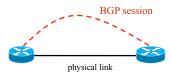


Interdomain Routing Security

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr14/cos461/


Interdomain Routing • AS-level topology - Nodes are Autonomous Systems (ASes) - Edges are links and business relationships 4 Web server

Border Gateway Protocol (BGP) • ASes exchange reachability information – Destination: block of addresses (an "IP prefix") – AS path: sequence of ASes along the path • Policies configured by network operators – Path selection: which of the paths to use? – Path export: which neighbors to tell? "I can reach d" via AS 1" data traffic d data traffic

BGP Session Security

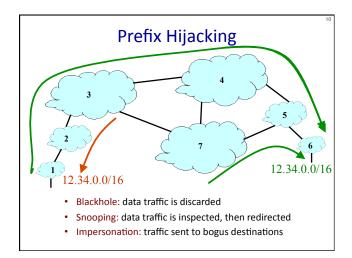
TCP Connection Underlying BGP Session

- BGP session runs over TCP
 - TCP connection between neighboring routers
 - BGP messages sent over TCP connection
 - Makes BGP vulnerable to attacks on TCP

Attacks on Session Security

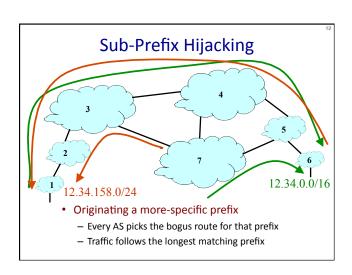
- Confidentiality
 - Eavesdropping by tapping the link
 - Inferring routing policies and stability

- Tampering by dropping, modifying, adding packets
- Changing, filtering, or replaying BGP routes
- Availability
 - Resetting the session or congesting the link
 - Disrupting communication and overloading routers


Defending Session Security is Easy

- · BGP routing information is propagated widely
 - Confidentiality isn't all that important
- Two end-points have a business relationship
 - Use known IP addresses and ports to communicate
 - Can agree to sign and encrypt messages
- Limited physical access to the path
 - Direct physical link, often in same building
- Low volume of special traffic
 - Filter packets from unexpected senders
 - Can give BGP packets higher priority

Validity of the routing information:
Origin authentication


IP Address Ownership and Hijacking

- IP address block assignment
 - ICANN -> Regional Internet Registries -> ISPs
- Proper origination of a prefix into BGP
 - By the AS who owns the prefix
 - ... or, by its upstream provider(s) in its behalf
- However, what's to stop someone else?
 - Prefix hijacking: another AS originates the prefix
 - BGP does not verify that the AS is authorized
 - Registries of prefix ownership are inaccurate

Hijacking is Hard to Debug

- The victim AS doesn't see the problem
 - Picks its own route, might not learn the bogus route
- · May not cause loss of connectivity
 - Snooping, with minor performance degradation
- Or, loss of connectivity is isolated
 - E.g., only for sources in parts of the Internet
- · Diagnosing prefix hijacking
 - Analyzing updates from many vantage points
 - Launching traceroute from many vantage points

How to Hijack a Prefix

- · The hijacking AS has
 - Router with BGP session(s)
 - Configured to originate the prefix
- · Getting access to the router
 - Network operator makes configuration mistake
 - Disgruntled operator launches an attack
 - Outsider breaks in to the router and reconfigures
- · Getting other ASes to believe bogus route
 - Neighbor ASes do not discard the bogus route
 - E.g., not doing protective filtering

YouTube Outage on Feb 24, 2008

- YouTube (AS 36561): 208.65.152.0/22
- Pakistan Telecom (AS 17557)
 - Government order to block access to YouTube
 - Announces 208.65.153.0/24 to PCCW (AS 3491)
 - All packets to YouTube get dropped on the floor
- Mistakes were made
 - AS 17557: announce to everyone, not just customers
 - AS 3491: not filtering routes announced by AS 17557
- Lasted 100 minutes for some, 2 hours for others

Timeline (UTC Time)

- 18:47:45: First evidence of hijacked /24 route in Asia
- 18:48:00: Several big trans-Pacific providers carrying route
- 18:49:30: Bogus route fully propagated
- 20:07:25: YouTube advertising /24 to attract traffic back
- 20:08:30: Many (but not all) providers are using valid route
- 20:18:43: YouTube announces two more-specific /25 routes
- 20:19:37: Some more providers start using the /25 routes
- 20:50:59: AS 17557 starts prepending ("3491 17557 17557")
- 20:59:39: AS 3491 disconnects AS 17557
- 21:00:00: Videos of cats flushing toilets are available again!

Another Example: Spammers

- Spammers sending spam
 - Form a (bidrectional) TCP connection to mail server
 - Send a bunch of spam e-mail, then disconnect
- But, best not to use your real IP address
 - Relatively easy to trace back to you
- · Could hijack someone's address space
 - But you might not receive all the (TCP) return traffic
- How to evade detection
 - Hijack unused (i.e., unallocated) address block
 - Temporarily use the IP addresses to send your spam

BGP AS Path

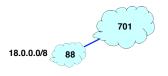
Bogus AS Paths

- Remove ASes from the AS path
 - E.g., turn "701 3715 88" into "701 88"
- Motivations
 - Attract sources that normally try to avoid AS 3715
 - Help AS 88 look like it is closer to the Internet's core
- Who can tell that this AS path is a lie?
 - Maybe AS 88 does connect to AS 701 directly

Bogus AS Paths

701

88


- · Add ASes to the path
 - E.g., turn "701 88" into "701 3715 88"

- Trigger loop detection in AS 3715
 - Denial-of-service attack on AS 3715
 - Or, blocking unwanted traffic coming from AS 3715!
- Make your AS look like is has richer connectivity
- Who can tell the AS path is a lie?
 - AS 3715 could, if it could see the route
 - AS 88 could, but would it really care?

Bogus AS Paths

- Adds AS hop(s) at the end of the path
 - E.g., turns "701 88" into "701 88 3"
- Motivations
 - Evade detection for a bogus route
 - E.g., by adding the legitimate AS to the end
- Hard to tell that the AS path is bogus...
 - Even if other ASes filter based on prefix ownership

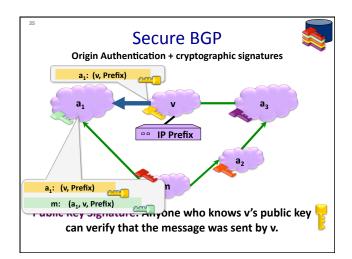
3 18.0.0.0/8

Invalid Paths

- AS exports a route it shouldn't
 - AS path is a valid sequence, but violated policy
- Example: customer misconfiguration
 - Exports routes from one provider to another
- · Interacts with provider policy
 - Provider prefers customer routes
 - Directing all traffic through customer

- · Main defense
 - Filtering routes based on prefixes and AS path

Missing/Inconsistent Routes


- · Peers require consistent export
 - Prefix advertised at all peering points
 - Prefix advertised with same AS path length
- Reasons for violating the policy
 - Trick neighbor into "cold potato"
 - Configuration mistake
- · Main defense
 - Analyzing BGP updates or traffic for signs of inconsistency

BGP Security Today

- · Applying "best common practices"
 - Securing the session (authentication, encryption)
 - Filtering routes by prefix and AS path
 - Packet filters to block unexpected control traffic
- This is not good enough
 - Depends on vigilant application of practices
 - Doesn't address fundamental problems
 - Can't tell who owns the IP address block
 - Can't tell if the AS path is bogus or invalid
 - Can't be sure the data packets follow the chosen route

Proposed Enhancements to BGP

"Secure BGP"

· Route attestations

- Distributed as an attribute in BGP update message
- Signed by each AS as route traverses the network

Address attestations

- Claim the right to originate a prefix
- Signed and distributed out-of-band
- Checked through delegation chain from ICANN

• S-BGP can validate

- AS path indicates the order ASes were traversed
- No intermediate ASes were added or removed
- Proper ASes originate prefixes

S-BGP Deployment Challenges

- Complete, accurate registries of prefix "owner"
- · Public Key Infrastructure
 - To know the public key for any given AS
- Cryptographic operations
 - E.g., digital signatures on BGP messages
- · Need to perform operations quickly
 - To avoid delaying response to routing changes
- Difficulty of incremental deployment
 - Hard to have a "flag day" to deploy S-BGP

Incrementally Deployable Solutions?

- Backwards compatible
 - No changes to router hardware or software
 - No cooperation from other ASes
- Incentives for early adopters
 - Security benefits for ASes that deploy the solution
 - ... and further incentives for others to deploy
- · What kind of solutions are possible?
 - Detecting suspicious routes
 - $\boldsymbol{-}\,\dots$ and then filtering or depreferencing them

28

Detecting Suspicious Routes

- Monitoring BGP update messages
 - Use past history as an implicit registry
- E.g., AS that announces each address block
 - Prefix 18.0.0.0/8 usually originated by AS 3
- E.g., AS-level edges and paths
 - Never seen the subpath "7018 88 1785"
- · Out-of-band detection mechanism
 - Generate reports and alerts
 - Internet Alert Registry: http://iar.cs.unm.edu/
 - Prefix Hijack Alert System: http://phas.netsec.colostate.edu/

Avoiding Suspicious Routes

- · Soft response to suspicious routes
 - Prefer routes that agree with the past
 - Delay adoption of unfamiliar routes when possible
- Why is this good enough?
 - Some attacks will go away on their own
 - Let someone else be the victim instead of you
 - Give network operators time to investigate
- · How well would it work?
 - If top ~40 largest ASes applied the technique
 - ... most other ASes are protected, too

What About Packet Forwarding?

Control Plane vs. Data Plane

- Control plane
 - BGP security concerns validity of routing messages
 - I.e., did the BGP message follow the sequence of ASes listed in the AS-path attribute
- · Data plane
 - Routers forward data packets
 - Supposedly along path chosen in the control plane
 - But what ensures that this is true?

Data-Plane Attacks, Part 1

- · Drop packets in the data plane
 - While still sending the routing announcements
- · Easier to evade detection
 - Especially if you only drop some packets
 - Like, oh, say, BitTorrent or Skype traffic
- Even easier if you just slow down some traffic
 - How different are normal congestion and an attack?
 - Especially if you let traceroute packets through?

Data-Plane Attacks, Part 2

- Send packets in a different direction
 - Disagreeing with the routing announcements
- · Direct packets to a different destination
 - E.g., one the adversary controls
- What to do at that bogus destination?
 - Impersonate the legitimate destination
 - Snoop on traffic and forward along to real destination
- How to detect?
 - Traceroute? Longer than usual delays?
 - End-to-end checks, like site certificate or encryption?

Data-Plane Attacks are Harder

- Adversary must control a router along the path
 - So that the traffic flows through him
- · How to get control a router
 - Buy access to a compromised router online
 - Guess the password, exploit router vulnerabilities
 - Insider attack (disgruntled network operator)
- Malice vs. greed
 - Malice: gain control of someone else's router
 - Greed: say, Verizon DSL blocks Skype to encourage me to use (Verizon) landline phone

What's the Internet to Do?

9

BGP is So Vulnerable

- Several high-profile outages
 - http://merit.edu/mail.archives/nanog/1997-04/msg00380.html
 - http://www.renesys.com/blog/2005/12/internetwide_nearcatastrophela.shtml
 - http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml
 - http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
 - http://www.theregister.co.uk/2010/04/09/china_bgp_interweb_snafu/
- Many smaller examples
 - Blackholing a single destination prefix
 - Hijacking unallocated addresses to send spam
- · Why isn't it an even bigger deal?
 - Really, most big outages are configuration errors
 - Most bad guys want the Internet to stay up

BGP is So Hard to Fix

- Complex system
 - Large, with around 40,000 ASes
 - Decentralized control among competitive Ases
- Hard to reach agreement on the right solution
 - S-BGP with PKI, registries, and crypto?
 - Who should be in charge of running PKI & registries?
 - Worry about data-plane attacks or just control plane?
- Hard to deploy the solution once you pick it
 - Hard enough to get ASes to apply route filters
 - Now you want them to upgrade to a new protocol

Conclusions

- · Internet protocols designed based on trust
 - Insiders are good guys, bad guys on the outside
- Border Gateway Protocol is very vulnerable
 - Glue that holds the Internet together
 - Hard for an AS to locally identify bogus routes
 - Attacks can have very serious global consequences
- Proposed solutions/approaches
 - Secure variants of the Border Gateway Protocol
 - Anomaly detection, with automated response
 - Broader focus on data-plane availability

39