

Datacenter Networks

Mike Freedman COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr14/cos461/

Cloud Computing

3

Cloud Computing

- Elastic resources
 - Expand and contract resources
 - Pay-per-use
 - Infrastructure on demand
- Multi-tenancy
 - Multiple independent users
 - Security and resource isolation
 - Amortize the cost of the (shared) infrastructure
- Flexible service management

Cloud Service Models

- · Software as a Service
 - Provider licenses applications to users as a service
 - E.g., customer relationship management, e-mail, ...
 - Avoid costs of installation, maintenance, patches, ...
- · Platform as a Service
 - Provider offers platform for building applications
 - E.g., Google's App-Engine, Amazon S3 storage
 - Avoid worrying about scalability of platform

Cloud Service Models

- Infrastructure as a Service
 - Provider offers raw computing, storage, and network
 - E.g., Amazon's Elastic Computing Cloud (EC2)
 - Avoid buying servers and estimating resource needs

Enabling Technology: Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- VM can migrate from one computer to another

Multi-Tier Applications

- · Applications consist of tasks
 - Many separate components
 - Running on different machines
- Commodity computers
 - Many general-purpose computers
 - Not one big mainframe
 - Easier scaling

Componentization leads to different types of network traffic

- "North-South traffic"
 - Traffic to/from external clients (outside of datacenter)
 - Handled by front-end (web) servers, mid-tier application servers, and back-end databases
 - Traffic patterns fairly stable, though diurnal variations
- "East-West traffic"
 - Traffic within data-parallel computations within datacenter (e.g. "Partition/Aggregate" programs like Map Reduce)
 - Data in distributed storage, partitions transferred to compute nodes, results joined at aggregation points, stored back into FS
 - Traffic may shift on small timescales (e.g., minutes)

North-South Traffic

Router

Front-End
Proxy

Web
Server

Data
Cache

Data
Cache

Database

Database

Layer 2 vs. Layer 3?

- Ethernet switching (layer 2)
 - Cheaper switch equipment
 - Fixed addresses and auto-configuration
 - Seamless mobility, migration, and failover
- IP routing (layer 3)
 - Scalability through hierarchical addressing
 - Efficiency through shortest-path routing
 - Multipath routing through equal-cost multipath

New datacenter networking problems have emerged...

22

Network Incast

- Incast arises from synchronized parallel requests
 - Web server sends out parallel request ("which friends of Johnny are online?"
 - Nodes reply at same time, cause traffic burst
 - Replies potential exceed switch's buffer, causing drops

22

Network Incast

- Solutions mitigating network incast
 - A. Reduce TCP's min RTO (often use 200ms >> DC RTT)
 - B. Increase buffer size
 - C. Add small randomized delay at node before reply
 - D. Use ECN with instantaneous queue size
 - E. All of above

Full Bisection Bandwidth

- Eliminate oversubscription?
 - Enter FatTrees
 - Provide static capacity

- But link capacity doesn't "scale-up". Scale out?
 - Build multi-stage FatTree out of k-port switches
 - k/2 ports up, k/2 down
 - Supports k³/4 hosts: 48 ports, 27,648 hosts

Full Bisection Bandwidth Not Sufficient

- · Must choose good paths for full bisectional throughput
- · Load-agnostic routing
 - Use ECMP across multiple potential paths
 - Can collide, but ephemeral? Not if long-lived, large elephants
- · Load-aware routing
 - Centralized flow scheduling, end-host congestion feedback, switch local algorithms

Conclusion

- Cloud computing
 - Major trend in IT industry
 - Today's equivalent of factories
- Datacenter networking
 - Regular topologies interconnecting VMs
 - Mix of Ethernet and IP networking
- · Modular, multi-tier applications
 - New ways of building applications
 - New performance challenges

Load Balancing

