com edu gov it mi net org

Discovery

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/sprl4/cos461/

Relationship Between Layers

‘ logical link ‘“ame

Discovery: Mapping Name to Address

‘ logical link ’name

address

Routing: Mapping Link to Path

‘ logical link ’name

address

physical
path

Naming

Different Kinds of Names

* Host name (e.g., www.cs.princeton.edu)
— Mnemonic, variable-length, appreciated by humans
— Hierarchical, based on organizations

* IP address (e.g., 128.112.7.156)
— Numerical 32-bit address appreciated by routers
— Hierarchical, based on organizations and topology
* MAC address (e.g., 00-15-C5-49-04-A9)
— Numerical 48-bit address appreciated by adapters
— Non-hierarchical, unrelated to network topology

Host Names vs. IP Addresses

Names easier (for us!) to remember

IP addresses can change underneath

— E.g., renumbering when changing providers
Name could map to multiple IP addresses

— www.cnn.com to multiple replicas of the Web site
Map to different addresses in different places
— E.g., to reduce latency, or return different content

Multiple names for the same address
—E.g., aliases like ee.mit.edu and cs.mit.edu

IP vs. MAC Addresses

* LANs designed for arbitrary network protocols
— Not just for IPv4 (e.g., IPvX, Appletalk, X.25, ...)

— Different LANs may have different addressing schemes

* A host may move to a new location
— So, cannot simply assign a static IP address
— Instead, must reconfigure the adapter

* Must identify the adapter during bootstrap
— Need to talk to the adapter to assign it an IP address

Questions

* Which allocations follow network topology?
* Which allocations follow organizational structure?
(A) Domain names
(B) IPs
(C) MACs
(D) Domains and IPs
(E) All of above

Discovery

Directories

* A key-value store
— Key: name; value: address(es)

— Answer queries: given name, return address(es)

* Caching the response
— Reuse the response, for a period of time
— Better performance and lower overhead

* Allow entries to change

— Updating the address(es) associated with a name
— Invalidating or expiring cached responses

Directory Design: Three Extremes

* Flood the query (e.g., ARP)
— The named node responds with its address

— But, high overhead in large networks

* Push data to all clients (/etc/hosts)
— All nodes store a full copy of the directory
— But, high overhead for many names and updates

* Central directory server

— All data and queries handled by one machine
— But, poor performance, scalability, and reliability

Directory Design: Distributed Solutions

* Hierarchical directory (e.g., DNS)
— Follow the hierarchy in the name space
— Distribute the directory, distribute the queries
— Enable decentralized updates to the directory

* Distributed Hash Table (e.g. P2P applications)
— Directory as a hash table with flat names
— Each directory node handles range of hash outputs
— Use hash to direct query to the directory node

Domain Name System (DNS)

Computer science concepts underlying DNS
* Indirection: names in place of addresses
* Hierarchy: in names, addresses, and servers

* Caching: of mappings from names to/from addresses

Strawman Solution #1: Local File

* Original name to address mapping
— Flat namespace
— /etc/hosts
— SRI kept main copy
— Downloaded regularly

* Count of hosts was increasing: moving from a
machine per domain to machine per user
— Many more downloads
— Many more updates

Strawman Solution #2: Central Server

* Central server
— One place where all mappings are stored
— All queries go to the central server

* Many practical problems
— Single point of failure
— High traffic volume
— Distant centralized database
— Single point of update
— Does not scale

Need a distributed, hierarchical collection of servers

16

Domain Name System (DNS)
* Properties of DNS

— Hierarchical name space divided into zones

— Distributed over a collection of DNS servers
* Hierarchy of DNS servers

— Root servers

— Top-level domain (TLD) servers
— Authoritative DNS servers

Performing the translations

— Local DNS servers and client resolvers

unnamed root

Distributed Hierarchical Database

®

%mrlc domains country domains

my.east.bar.edu

usr.cam.ac.uk

12.34.56.0/24

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)
* Labeled A through M

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles)
D U Maryland College Park, MD
G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign, (11 locations)

| Autonomica, Stockholm

/ (plus 3 other locations)

E NASA Mt View, CA
F Internet Software C. Palo -
Alto, CA (and 17 other 3

locations) \ 3

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA ‘
y
J

K RIPE London (+ Amsterdam, Frankfurt)

m WIDE Tokyo

TLD and Authoritative DNS Servers

* Global Top-level domain (gTLD) servers
— Generic domains (e.g., .com, .org, .edu)
— Country domains (e.g., .uk, .fr, .ca, .jp)

— Managed professionally (e.g., Verisign for .com .net)

e Authoritative DNS servers

— Provide public records for hosts at an organization
— For the organization’s servers (e.g., Web and mail)
— Can be maintained locally or by a service provider

Reliability

* DNS servers are replicated
— Name service available if at least one replica is up
— Queries can be load balanced between replicas

UDP used for queries
— Need reliability: must implement this on top of UDP

Try alternate servers on timeout

— Exponential backoff when retrying same server

Same identifier for all queries
— Don’t care which server responds

DNS Queries
and Caching

Using DNS

* Local DNS server (“default name server”)
— Usually near the end hosts who use it
— Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn the server via DHCP
* Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() or getaddrinfo() to get address

* Server application
— Extract client IP address from socket
— Optional gethostbyaddr() to translate into name

. root DNS server for .
DNS Queries
Host a.cs.princeton.edu / TLD DNS server
wants IP address for 4 5 for.edu

d local DNS server &/
www.umass.eau dns.princeton.edu ﬂ 6

VAN

local DNS server "
g

dns.cs.princeton.edu ﬂ
1 authoritative DNS server
. /10 for umass.edu
Note Recursive vs. dns.umass.edu

Iterative Queries e
requesting host
a.cs.princeton.edu

w

www.umass.edu

24

root DNS server for .

DNS Caching

* DNS query latency 3
TLD DNS server
— E.g., 1 sec latency before 4 for .edu

5

N

starting a download Vav,
|—0
* Caching to reduce 6
overhead and delay 2 7
— Small # of top-level servers, 8 7
that change rarely ’
— Popular sites visited often 1 authoritative DNS server
/10 for umass.edu

dns.umass.edu

@

¢ Where to cache?

— Local DNS server it O

requesting host
a.cs.princeton.edu

— Browser www.umass.edu

25

DNS Cache Consistency

* Goal: Ensuring cached data is up to date

* DNS design considerations
— Cached data is “read only”
— Explicit invalidation would be expensive
* Server would need to keep track of all resolvers caching

* Avoiding stale information
— Responses include a “time to live” (TTL) field
— Delete the cached entry after TTL expires

* Perform negative caching (for dead links, misspellings)
— So failures quick and don’t overload gTLD servers

Setting the Time To Live (TTL)

e TTL trade-offs
— Small TTL: fast response to change
— Large TTL: higher cache hit rate

* Following the hierarchy
— Top of the hierarchy: days or weeks
— Bottom of the hierarchy: seconds to hours

* Tension in practice
— CDNs set low TTLs for load balancing and failover
— Browsers cache for 15-60 seconds

Questions
* Tension:
— DNS operators want high TTL for low load on DNS servers,

— Domains want low TTL for faster failover b/w IP addrs

(A) True (B) False

* By returning IP addresses in “round robin” fashion, DNS
operators can ensure equal load better servers

(A) True (B) False

* Most applications obey TTLs on DNS records
(A) True (B) False

Questions
* Tension:
— DNS operators want high TTL for low load on DNS servers,

— Domains want low TTL for faster failover b/w IP addrs
(A) True (B) False

* By returning IP addresses in “round robin” fashion, DNS
operators can ensure equal load better servers

(A) True (B) False

* Most applications obey TTLs on DNS records
(A) True (B) False

DNS Resource Records

‘ RR format: (name, value, type, ttl) ‘

° Type=A
—Name: hostname
—Value: IP address

* Type=NS
—Name: domain
—Value: hostname of
name server for domain

e Type=CNAME
—Name: alias for some
“canonical” (the real) name:
www.ibm.com is really
srveast.backup2.ibm.com
—Value: canonical name

° Type=MX
—Value: name of mailserver
associated with name

Learning Your Local DNS Server

How To Bootstrap an End Host?

* What local DNS server to use?

* What IP address the host should use?

* How to send packets to remote destinations?

* How to ensure incoming packets arrive?

277 1.2.3.7 1.2.3.156

Avoiding Manual Configuration

* Dynamic Host Configuration Protocol (DHCP)
— End host learns how to send packets
— Learn IP address, DNS servers, and gateway

* Address Resolution Protocol (ARP)
— Others learn how to send packets to the end host
— Learn mapping between IP address & interface address

?2?2? 1.2.3.7 1.2.3.156

Key Ideas in Both Protocols

* Broadcasting: when in doubt, shout!
— Broadcast query to all hosts in local-area-network

* Caching: remember the past for a while
— Store the information you learn to reduce overhead
— Remember your address & other host’s addresses

* Soft state: ... but eventually forget the past
— Associate a time-to-live field with the information
— ... and either refresh or discard the information
— Key for robustness in face of unpredictable change

34

Bootstrapping Problem
* Host doesn’t have an IP address yet

— So, host doesn’t know what source to use

* Host doesn’t know who to ask for an IP address
— So, host doesn’t know what destination to use

* Solution: discover a server who can help
— Broadcast a DHCP server-discovery message
— Server sends a DHCP “offer” offering an address

DHCP server

Dynamic Host Configuration Protocol

ﬁ DHecp - DHCP server
@[T P discoyg, 192.168.1.1
r°ad°ast) =
=
d

arriving offer
client DHCP
One or more servers return:

* Client echoes * Config params (proposed IP addr,
selected parameters net mask, gateway, DNS server, ...)

DHep * Lease time (validity interval)
(ro——2quest
roadcast)
pHCP ACK .
* Chosen DHCP server confirms

 Other servers see not chosen

36

Deciding What IP Address to Offer

* Static allocation
— Servers have dedicated IP for each MAC address
— Makes it easy to track a host over time

* Dynamic allocation
— Servers maintain address pool and assign on demand
— More efficient use of (limited) set of addresses

* Soft-state assignments
— Client can release explicitly or leave/crash
— Tradeoff: inactive addresses vs. frequent renewals

37

Questions

* When should client start using allocated address?
(A) After it receives the first DHCP Offer
(B) After it selects one to use following one or more Offers
(C) After it receives a DHCP ACK from the server

* DHCP servers require a special coordination protocol to
maintain their address pool’s consistency

(A) True (B) False

Questions

* When should client start using allocated address?
(A) After it receives the first DHCP Offer
(B) After it selects one to use following one or more Offers
(C) After it receives a DHCP ACK from the server

* DHCP servers require a special coordination protocol to
maintain their address pool’s consistency

(A) True (B) False

So, Now the Host Knows Things

* |P address

* Mask

* Gateway router
* DNS server

* And can send packets to other IP addresses
— How to learn the MAC address of the destination?

10

Sending Packets Over a Link

IP packet

1.2.3.53
1.2.3.156

* Adapters only understand MAC addresses
— Translate the destination IP address to MAC address
— Encapsulate the IP packet inside a link-level frame

Address Resolution Protocol Table

* Every node maintains an ARP table
— (IP address, MAC address) pair

* Consult the table when sending a packet
— Map destination IP to destination MAC address
— Encapsulate and transmit the data packet

* But, what if the IP address is not in the table?
— Sender broadcasts: “Who has IP address 1.2.3.156?”

— Receiver responds: “MAC address 58-23-D7-FA-20-B0”
— Sender caches the result in its ARP table

Conclusion

* Discovery

— Mapping a name at the upper layer
— ... to an address at the lower layer

* Domain Name System (DNS)
— Hierarchical names, hierarchical directory
— Query-response protocol with caching

— Time-To-Live to expire stale cached responses

* Next time: routing

Backup Slides

11

DNS Protocol

DNS protocol : query and reply msg,

both with same msg format

identification flags

Message header

number of questions | number of answer RRs

« |dentification: 16 bit #

number of authority RRs | number of additional RRs

for query, reply to

query uses same # questions

(variable number of questions)

* Flags:
—Query or reply

(variable number of resource records)

—Recursion desired
—Recursion available

authority
(variable number of resource records)

additional information
(variable number of resource records)

—Reply is authoritative

.

12 bytes

1

Inserting Resource Records into DNS

* Example: just created startup “FooBar”
* Register foobar.com at Network Solutions

— Provide registrar with names and IP addresses of
your authoritative name server (primary and
secondary)

— Registrar inserts two RRs into the com TLD server:

* (foobar.com, dnsl.foobar.com, NS)
* (dnsl.foobar.com, 212.212.212.1, A)

e Put in authoritative server dnsl.foobar.com

— Type A record for www.foobar.com
— Type MX record for foobar.com

* Play with “dig” on UNIX

$ dig nytimes.com ANY
; QUESTION SECTION:
;nytimes.com. IN ANY

;; ANSWER SECTION:

nytimes.com. 267 IN MX 100 NYTIMES.COM.S7Al.PSMTP.com.

nytimes.com. 267 IN MX 200 NYTIMES.COM.S7A2.PSMTP.com.

nytimes.com. 267 IN A 199.239.137.200

nytimes.com. 267 IN A 199.239.136.200

nytimes.com. 267 IN TXT "v=spfl mx ptr ip4:199.239.138.0/24
include:alerts.wallst.com include:authsmtp.com ~all"

nytimes.com. 267 IN SOA nslt.nytimes.com. root.nslt.nytimes.com.
2009070102 1800 3600 604800 3600

nytimes.com. 267 IN NS nydns2.about.com.

nytimes.com. 267 IN NS nslt.nytimes.com.

nytimes.com. 267

;; AUTHORITY SECTION:
nytimes.com. 267
nytimes.com. 267

nytimes.com. 267

IN NS nydnsl.about.com.

IN NS nydnsl.about.com.
IN NS nslt.nytimes.com.
IN NS nydns2.about.com.

;; ADDITIONAL SECTION:
nydnsl.about.com. 86207 IN A 207.241.145.24
nydns2.about.com. 86207 IN A 207.241.145.25

$ dig nytimes.com +norec @a.root-servers.net

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53675
flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 14

QUESTION SECTION:

;nytimes.com. IN a

AUTHORITY SECTION:

com. 172800 1IN NS K.GTLD-SERVERS.NET.
com. 172800 IN NS E.GTLD-SERVERS.NET.
com. 172800 IN NS D.GTLD-SERVERS.NET.
com. 172800 1IN NS I.GTLD-SERVERS.NET.
com. 172800 1IN NS C.GTLD-SERVERS.NET.

A.GTLD-SERVERS.NET. 172800 IN A 192.5.6.30
A.GTLD-SERVERS.NET. 172800 1IN AAAA 2001:503:a83e::2:30
B.GTLD-SERVERS.NET. 172800 IN A 192.33.14.30
B.GTLD-SERVERS.NET. 172800 1IN AAAA 2001:503:231d::2:30
C.GTLD-SERVERS.NET. 172800 1IN A 192.26.92.30
D.GTLD-SERVERS.NET. 172800 IN A 192.31.80.30
E.GTLD-SERVERS.NET. 172800 IN A 192.12.94.30

ADDITIONAL SECTION:

;; Query time: 76 msec

; SERVER: 198.41.0.4#53(198.41.0.4)
; WHEN: Mon Feb 23 11:24:06 2009
; MSG SIZE rcvd: 501

12

$ dig nytimes.com +norec @k.gtld-servers.net

;; =>>HEADER<<- opcode: QUERY, status: NOERROR, id: 38385
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 3

;i QUESTION SECTION:

$ dig nytimes.com ANY +norec @nslt.nytimes.com

;i ->>HEADER<<- opcode

;; flags: qr aa; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 1

;i QUESTION SECTION:

: QUERY, status: NOERROR, id: 39107

;nytimes.com. IN A ;nytimes.com. IN ANY
;; AUTHORITY SECTION: ;; ANSWER SECTION:
nytimes.com. 172800 1IN NS nslt.nytimes.com. nytimes.com. 300 IN soa nslt.nytimes.com.
nytimes.com. 172800 1IN NS nydnsl.about.com. root.nslt.nytimes.com. 2009070102 1800 3600 604800 3600
nytimes.com. 172800 IN NS nydns2.about.com. nytimes.com. 300 IN MX 200 NYTIMES.COM.S7A2.PSMTP.com.
nytimes.com. 300 IN MX 100 NYTIMES.COM.S7Al.PSMTP.com.
;; ADDITIONAL SECTION: nytimes.com. 300 IN NS nslt.nytimes.com.
nslt.nytimes.com. 172800 1IN A 199.239.137.15 nytimes.com. 300 IN NS nydnsl.about.com.
nydnsl.about.com. 172800 1IN A 207.241.145.24 nytimes.com. 300 IN NS nydns2.about.com.
nydns2.about.com. 172800 1IN A 207.241.145.25 nytimes.com. 300 IN A 199.239.137.245
nytimes.com. 300 IN A 199.239.136.200
;; Query time: 103 msec nytimes.com. 300 IN A 199.239.136.245
;; SERVER: 192.52.178.30#53(192.52.178.30) nytimes.com. 300 IN TXT "v=spfl mx ptr ip4:199.239.138.0/24

;; WHEN: Mon Feb 23 11:24:59 2009
;; MSG SIZE rcvd: 144

include:alerts.wallst.com include:authsmtp.com ~all"

;; ADDITIONAL SECTION:

nslt.nytimes.com. 300 IN A 199.239.137.15

;; Query time: 10 msec

;; SERVER: 199.239.137
;; WHEN: Mon Feb 23 11

.15#53(199.239.137.15)
:25:20 2009

;; MSG SIZE rcvd: 454

DNS security

* DNS cache poisoning
— Ask for www.evil.com
— Additional section for (www.cnn.com, 1.2.3.4, A)
— Thanks! 1 won’t bother check what | asked for

* DNS hijacking

— Let’s remember the domain. And the UDP ID.

— 16 bits: 65K possible IDs
* What rate to enumerate all in 1 sec? 64B/packet
* 64*65536*8 /1024 / 1024 = 32 Mbps

— Prevention: Also randomize the DNS source port
* E.g., Windows DNS alloc’s 2500 DNS ports: ~164M possible IDs
* Would require 80 Gbps
* Kaminsky attack: this source port...wasn’t random after all .

13

