COS 423 2/10/14
Shortest Paths

©Robert E. Tarjan 2014

Directed graph with arc weights

path weight = sum of arc weights along path

Goal: find a minimum-weight path from s to t,
for given pairs of vertices s, t

weights: costs, travel times, lengths,...

Henceforth think of weights as lengths;

a minimum-weight path is shortest (but we
allow negative lengths)

Paths, g, d, e f, t
Length 22 +2+16+30+ 18 =88
Shortest?

Versions of shortest path problem

Single pair: from one sto one t

Single source: from one s to each possible t
Single sink: from each possible s to one t

All pairs: from each possible s to each possible t

Single-source problem is central:
equivalent to single-sink problem (reverse arc
directions)
all pairs = n single-source problems
single-pair algorithms at least partially solve a
single-source (or single-sink) problem

Special cases

No negative arcs

No cycles

Planar graph

Road network

Public transportation network

Public and private transportation network
(car, train, bus, airplane, walking...)

Negative cycles

A negative cycle is a cycle whose total length is
negative.

If there are no negative cycles and there is some
path from s to t (t is reachable from s), then
there is a shortest path from s to t that is
simple (it contains no repeated vertices):

deletion of a cycle from the path does not
increase the length of the path.

If a negative cycle is reachable from s, then
there are arbitrarily short paths from s to
every vertex on the cycle: just repeat the
cycle.

If there are negative cycles, the problem of
finding a shortest simple path is NP-hard.

Revised goal: Find a shortest path from s to t for
each of the given pairs s, t, or find a negative
cycle.

In some applications, negative cycles are good,
and the goal is to find one.

Currency arbitrage: find a money-making cycle
of currency trades

S1=¥83.1724 ¥1=£0.00741115

£1=€1.18694 €1= $1.3668

Does trading S for ¥ for £ for € for S (or some
other cycle of trades) make money?

Graph: vertices are currencies, arcs are
currency conversions, weights are exchange
rates

Value of cycle: product of exchange rates
around cycle

money-making <> value > 1

Transform: arc length = —lg(exchange rate)
value > 1 ¢ cycle length< 0

Notation

G = (V, A): graph with vertex set V and arc set A

n=|V|,m=|A|,assumen>1, m>n-1

s: source vertex for single-source or single-pair
problem

t: target vertex for single-sink or single-pair
problem

(v, w): arcfromvto w

c(v, w) = length of arc (v, w)

c(P) = length of path P

Single—source problem: find shortest paths
from s to each vertex reachable from s, or find
a negative cycle reachable from s.

Method: iterative improvement. For each
vertex v, maintain a label d(v) equal to the
length of a shortest path from s to v found so
far. Look for shorter paths by repeatedly
scanning arcs (v, w). If d(v) + c(v, w) < d(w), a
shorter path to w exists: reduce d(w) to d(v) +
c(v, w). Stop when no such improvement is
possible.

The Labeling Algorithm

for w € Vdo d(w) < o; d(s) < O;
repeat scan some arc (v, w)
until no scan can reduce a distance
where scan(v, w):
if d(v) + c(v, w) < d(v, w) then
d(w) < d(v) + c(v, w)

(The Operations Research literature calls scanning
(v, w) relaxing (v, w).)

Lemma 1: The labeling algorithm maintains the
invariant that if d(w) < oo, w is reachable from s,
and d(w) is the length of a path from s to w.

Proof: For each assignment to d(w) we define a
path P(w, d(w)) from s to w of length d(w), as
follows: P(s, 0) is the path consisting of vertex s
and no arcs; if d(w) <= d(v) + c(v, w), the path
P(w, d(w)) is P(v, d(v)) followed by (v, w).

Theorem 1: If the algorithm stops, d(w) if finite
is the length of a shortest path from s to w,
and d(w) = o0 €& w is unreachable from s.

Proof: Suppose the algorithm stops. Let P be
any path from s to w. Then d(x) + c(x, y) = d(y)
for every arc (x, y) on P. Summing over all arcs
on P gives c(P) 2 d(w) — d(s) = d(w), since d(s) <
0. Thus if there is some path from s to w, d(w)
< oo, |f d(w) < o, there is a path P* from s to w
of length d(w) by Lemma 1. Since P is any
path, P* is a shortest path. If there is no path
from s to w, then d(w) = c© by Lemma 1.

Theorem 1 implies that if there is a negative cycle
reachable from s, the labeling algorithm never
stops.

If there are no negative cycles, a stronger version
of Lemma 1 holds:

Lemma 2: If there are no negative cycles, each
path P(w, d(w)) defined in the proof of Lemma
1 is simple.

Proof: Suppose the lemma is false. Let P(w, d(w))
be the first such path defined that is not
simple, and let d(w) < d(v) + c(v, w) be the
corresponding assignment. Then P(v, d(v)) is
simple but contains w. Thus P(v, d(v)) is P(w, d’)
followed by P’, where P(w, d’) is a path
corresponding to an earlier assignment and P’
is a path from wtov. Thend’>d(v) + c(v, w)
and c(P’) =d(v) —d’. The cycle formed by P’
followed by (v, w) has length d(v) —d’ + c(v, w)
< 0, a contradiction.

Theorem 2: If there are no negative cycles, the
algorithm stops.

Proof: By Lemma 2, the number of labeling
steps is at most the number of simple paths
from s.

The bound on the number of steps given by the
proof of Theorem 2 is exponential, and indeed
the labeling algorithm takes exponential time
in the worst case. (Example?) To make the
algorithm efficient, we must choose the order
of scanning steps carefully.

The Labeling Algorithm
with Parents

We can extend the algorithm to find shortest paths,
not just their lengths, by maintaining a parent
p(w) for each vertex w: p(w) is the next-to-last
vertex on the shortest path to w found so far.

initialize p(s) <— null;
scan(v, w): if d(v) + c(v, w) < d(w) then
{d(w) <= d(v) + c(v, w); p(w) <= v}

Lemma 3: If p(w) = null, d(p(w)) + c(p(w), w) <
d(w).

Proof: Just after a step that decreases d(w),
d(p(w)) + c(p(w), w) =d(w). Until d(w)
decreases again, p(w) does not change, and
d(p(w)) cannot increase.

Lemma 4: If the algorithm stops and p(w) = null,
d(p(w)) + c(p(w), w) = d(w).

Proof: If p(w) = null and(p(w) + c(p(w), w) = d(w),
d(p(w)) + c(p(w), w) < p(w) by Lemma 3, so the
algorithm does not stop.

Lemma 5: Any cycle of arcs (p(x), x) is negative.

Proof: Suppose a labeling step creates a cycle C
of such arcs by assigning p(w) <= v. Consider
the state just before the step. For any vertex
x # w on the cycle, c(p(x), x) < d(x) — d(p(x)) by
Lemmma 3. Also, c(v, w) < d(w) —d(v).
Summing these inequalities over all arcs on C
gives c(C) < 0. (All terms on the right side
cancel.)

Theorem 3: If there are no negative cycles, the
arcs (p(v), v) form a tree T rooted at s (no arc
enters s, one arc enters each vertex other
than s, and there are no cycles) containing
exactly the vertices reached from s. When the
algorithm stops, T is a shortest path tree (SPT):
every path in T is shortest.

Proof: Immediate from Theorems 1 and 2 and
Lemmas 4 and 5.

Corollary 1: G contains either a shortest path
tree rooted at s or a negative cycle reachable
from s.

Interlude: Shortest Path Tree
Verification

Suppose we are given a graph Gand atree T
rooted at s whose arcs are in G. How can we

test whether T is a shortest path tree(SPT) of
G?

The labeling algorithm provides an O(m)-time
test: for each vertex win G, compute d(w) as
follows: d(s) =0, d(w) = d(p(w)) + c(p(w), w)
where p(w) is the parentof win T, d(w) = oo if
wisnotinT. Then Tis an SPT if and only if for
every arc (v, w) in G, d(v) + c(v, w) = d(w).

SPT Verification
Given a spanning tree, is it an SPT?

Instead of starting with the labeling algorithm,
we could have started with the verification
algorithm and obtained the labeling algorithm
from it: A failure of the verification test gives a
shorter path to some vertex; the labeling
algorithm consists of applying the verification
test, updating a distance if it fails, and repeating
until it succeeds.

Good Scanning Orders

General graphs:
Breadth-first (Bellman-Ford): scan an arc
(v, w) with fewest previous scans
Non-negative arc lengths:
Shortest-first (Dijkstra): scan an
unscanned (v, w) with d(v) minimum
Acyclic graphs:
Topological: scan an unscanned
(v, w) with all arcs into v scanned

Breadth-First Labeling
(Bellman-Ford)

for w € Vdo d(w) <— o; d(s) <= 0; p(s) <= null;
repeat scan every arc
until no distance changes

Each pass can scan the arcs in any order. The
algorithm stops when an entire pass changes no
distances.

Running Time of Breadth-First
Labeling

After pass k, each vertex having a shortest path
from s of k arcs has correct distance

Each vertex has a shortest path of at mostn—1
arcs - all distances correct after passn—-1

— algorithm stops after <n passes, or never
Each pass scans each arc at most once
- O(nm) time

Heuristics?

Breadth-first labeling, or the even simpler
algorithm of scanning all the arcs n—1 times, is
often taught. (See COS 226.) But these simple
versions of Bellman-Ford can do many arc scans
that do not decrease a distance, or do decrease
a distance but not to the minimum. Such arc
scans are useless.

We want to reduce the number of useless arc
scans, but without increasing the O(nm) worst-
case time bound. We look at two heuristics for
doing this.

The first does the scans vertex-by-vertex instead
of arc-by-arc. It maintains a set of labeled
vertices L: if d(v) + c(v, w) < d(w) (arc (v, w)
needs to be scanned), v E L.

The Scanning Algorithm

for w & Vdo d(w) < «; d(s) < 0; L < {s};
while somev & L do

{delete v from L;

scan(v): for each arc (v, w) do

scan(v, w):
if d(v) + c(v, w) < d(w) then
{d(w) <= d(v) + c(v, w); p(w) <= v;
if wnotin L then add w to L}};

Lemma 6: If d(v) + c(v, w) <d(w), then visin L.

Proof: By induction on #steps. True initially.
Once d(v) + c(v, w) =2 d(w), can only become
false if d(v) decreases, in which case v is added
to L.

— The scanning algorithm is correct

Graph Representation

For each vertex, store the set of outgoing arcs

Store arc sets in lists, or in arrays, which can be
subarrays of one big array

Array representation saves space (no pointers),
improves locality of access

Either representation stores the graph in O(n +
m) = O(m) space.

The Breadth-First Scanning Algorithm

Maintain L as a queue (first-in-first-out): add to
the back, delete from the front.

Generalized breadth-first scanning via two sets:
Add newly scanned verticesto L’. Once L is
empty, move all verticesin L”to L. Scan
vertices in L in arbitrary order.

SSSSS

s:0, a:3 scan g, scan |

s:0,a:3,j:16, d:9 scan k, scan g
L=k:21, g:20, h:9, e:25

s:0, a:3,j:16,d:9, k:21, g:20
L=h:9, e:25,i:11, m:26

o \ 27 ’

16

Running Time of (Generalized)
Breadth-First Scanning

Same analysis as breadth-first labeling:
Define passes through L:
pass 1 = scanning of s
pass k + 1 = scanning of vertices added to L in
pass k

After pass k, all distances to vertices with
shortest paths of k arcs or fewer are correct

— algorithm stops after <n passes, or never

Each arc is scanned at most once per pass

—> O(nm) time

Breadth-first scanning can do many fewer arc
scans than breadth-first labeling even though
both have the same worst-case time bound and
both do the same number of passes: the latter

scans every arc during every pass, the former
scans only those from vertices in L.

What we have learned

Either there is a shortest path tree (SPT) rooted at s
or there is a negative cycle reachable from s.

Breadth-first labeling or breadth-first scanning will

find an SPT rooted at s or a negative cycle
reachable from s in at most n passes and O(nm)
time.

Breadth-first labeling is simpler but can do many
more useless arc scans: use breath-first scanning.

