
COS 226 Algorithms and Data Structures Spring 2014

Midterm

This test has 9 questions worth a total of 55 points. You have 80 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write out
and sign the Honor Code pledge before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
0 5
1 6
2 7
3 8
4

Sub 1 Sub 2

Total

Name:

netID:

Room:

Precept: P01 Th 11 Andy Guna
P02 Th 12:30 Andy Guna
P03 Th 1:30 Chris Eubank
P04 F 10 Jenny Guo
P05 F 11 Madhu Jayakumar
P05A F 11 Nevin Li
P06 F 2:30 Josh Hug
P06A F 2:30 Chris Eubank
P06B F 2:30 Ruth Dannenfelser
P07 F 3:30 Josh Hug

1

2 PRINCETON UNIVERSITY

0. Miscellaneous. (1 point)

In the space provided on the front of the exam, write your name and Princeton netID; circle
your precept number; write the name of the room in which you are taking the exam; and
write and sign the honor code.

1. Memory and data structures. (4 points)

Suppose that you implement a binary heap using an explicit binary tree data structure, where
each node has three pointers (to its left child, its right child, and its parent).

public class BinaryHeapPQ<Key extends Comparable<Key>> {

private Node root; // root of tree

private int N; // number of keys in the data structure

private class Node {

private Key key; // the key

private Node left; // left child

private Node right; // right child

private Node parent; // parent

}

...

}

Using the 64-bit memory cost model from lecture and the textbook, how much memory (in
bytes) does a BinaryHeapPQ object use to store N keys (in N nodes)? Use tilde notation to
simplify your answer.

Do not include the memory for the keys themselves but do include all other memory.

∼ bytes

COS 226 MIDTERM, SPRING 2014 3

2. Eight sorting algorithms and a shuffling algorithm. (9 points)

The column on the left is the original input of strings to be sorted or shuffled; the column
on the right are the strings in sorted order; the other columns are the contents at some
intermediate step during one of the algorithms listed below. Match up each algorithm by
writing its number under the corresponding column. Use each number exactly once.

0 deer sole bass bear bass bear clam bear bull tuna bass

1 clam slug bull clam bear bull bear bull clam swan bear

2 bear clam bear deer bull calf bass calf bear sole bull

3 myna myna crow dove calf clam crow clam bass myna calf

4 tuna calf deer moth clam deer crab deer crow lion clam

5 slug moth clam myna crab dove calf dove crab slug crab

6 dove bull calf slug crow gnat bull lynx calf seal crow

7 moth lynx dove tuna deer lynx deer moth deer mule deer

8 lynx deer hoki bull dove moth lynx myna lynx lynx dove

9 bull tuna duck calf duck myna moth slug moth crow duck

10 calf bear crab gnat gnat pony sole sole dove clam gnat

11 sole dove mule lynx hoki seal pony tuna sole puma hoki

12 pony pony moth pony pony slug seal gnat pony pony lion

13 seal seal lynx seal seal sole gnat hoki seal dove lynx

14 gnat gnat gnat sole myna swan swan mule gnat gnat moth

15 swan swan puma swan swan tuna mule pony swan moth mule

16 mule mule myna bass mule mule hoki seal mule deer myna

17 hoki hoki seal crab sole hoki duck swan hoki hoki pony

18 duck duck lion crow tuna duck dove bass duck duck puma

19 crab crab sole duck slug crab slug crab slug crab seal

20 crow crow pony hoki lynx crow tuna crow tuna bull slug

21 bass bass tuna lion moth bass lion duck myna bass sole

22 lion lion slug mule lion lion puma lion lion calf swan

23 puma puma swan puma puma puma myna puma puma bear tuna

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

0 1

(0) Original input

(1) Sorted

(2) Selection sort

(3) Insertion sort

(4) Knuth shuffle

(5) Shellsort
(13-4-1 increments)

(6) Mergesort
(top-down)

(7) Mergesort
(bottom-up)

(8) Quicksort
(standard, no shuffle)

(9) Quicksort
(Dijkstra 3-way, no shuffle)

(10) Heapsort

4 PRINCETON UNIVERSITY

3. Analysis of algorithms. (6 points)

Suppose that you have an array of length N consisting of alternating B’s and A’s, starting
with B. For example, below is the array for N = 16.

B A B A B A B A B A B A B A B A

(a) How many compares does selection sort make to sort the array as a function of N?
Use tilde notation to simplify your answer.

∼ compares

(b) How many compares does insertion sort make to sort the array as a function of N?
Use tilde notation to simplify your answer.

∼ compares

(c) How many compares does mergesort make to sort the array as a function of N? You
may assume N is a power of 2. Use tilde notation to simplify your answer.

∼ compares

COS 226 MIDTERM, SPRING 2014 5

4. Binary heaps. (6 points)

Consider the following binary heap.

30

Midterm, Spring 2014

37

38

34

3033

2831 2927

36

1714

1613 1511

35

25

2324

2120 1812

32

2226

1
10

\
19

(a) Suppose that the last operation performed in the binary heap above was inserting the
key x. Circle all possible value of x.

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

(b) Suppose that you delete the maximum key from the binary heap above.
Circle all keys that are involved in one (or more) compares.

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

6 PRINCETON UNIVERSITY

5. Red-black BSTs. (6 points)

Consider the following left-leaning red-black BST.

Midterm, Spring 2014

4

2

10

14

8

red link

6

24

18

16

20

28

22

12

26

which key is in the root node after inserting the
following key into the red-black BST aboveSuppose that you insert the given key into the left-leaning red-black BST above. Which key

is in the root node immediately after the insertion?

The insertions are not cumulative—you are inserting each key into the red-black BST above.

insert key key in root after insertion

25

21

19

1 14

COS 226 MIDTERM, SPRING 2014 7

6. Problem identification. (7 points)

You are applying for a job at a new software technology company. Your interviewer asks you
to identify the following tasks as either possible (with algorithms and data structures learned
in this course), impossible, or an open research problem. You may use each letter once, more
than once, or not at all.

−−−−− Implement a union-find data type so that all operations (except
construction) take logarithmic time in the worst case.

−−−−− Find two strings in Java that are not equal but have the same
hashCode()

−−−−− Design a compare-based algorithm to merge two sorted arrays,
each of length N/2, into a sorted array of length N that makes
∼ 1

2N compares in the worst case.

−−−−− Given a binary heap on N distinct keys, build a BST containing
those keys using ∼ 17N compares in the worst case.

−−−−− Given a binary search tree (not necessarily balanced) on N dis-
tinct keys, build a binary heap containing those N keys using
∼ 17N compares in the worst case.

−−−−− Design a stable compare-based sorting algorithm that sorts any
array of N comparable keys using ∼ N log2N compares in the
worst case.

−−−−− Given a sorted array of N keys (not necessarily distinct), find
the number of keys equal to a given query key using ∼ 2 log2N
compares in the worst case.

I. Impossible

P. Possible

O. Open

8 PRINCETON UNIVERSITY

7. Leaky stack. (8 points)

A leaky stack is a generalization of a stack that supports adding a string; removing the
most-recently added string; and deleting a random string, as in the following API:

32

Randomized stack API

public class LeakyStackpublic class LeakyStackpublic class LeakyStack

LeakyStack() create an empty randomized stack

void push(String item) push the string on the randomized stack

String pop() remove and return the string most recently added

void leak() remove a string from the stack, uniformly at random

All operations should take time proportional to logN in the worst case, where N is the number
of items in the data structure.

For example,

LeakyStack stack = new LeakyStack();

stack.push("A"); // A [add A]

stack.push("B"); // A B [add B]

stack.push("C"); // A B C [add C]

stack.push("D"); // A B C D [add D]

stack.push("E"); // A B C D E [add E]

stack.pop(); // A B C D [remove and return E]

stack.push("F"); // A B C D F [add F]

stack.leak(); // A B C F [choose D at random; delete D]

stack.leak(); // A C F [choose B at random; delete B]

stack.pop(); // A C [remove and return F]

stack.pop(); // A [remove and return C]

stack.pop(); // [remove and return A]

Give a crisp and concise English description of your data structure. Your answer will be
graded on correctness, efficiency, and clarity.

COS 226 MIDTERM, SPRING 2014 9

(a) Declare the instance variables for your data structure. For example, here are the decla-
ration for a data type that contains a linear-probing hash table (string keys and integer
values) along with an integer:

private LinearProbingHashST<String, Integer> st;

private int N;

(b) Brief describe how to implement each of the operations, using either prose or code.

• void push(String item):

• String pop()

• void leak():

10 PRINCETON UNIVERSITY

8. Largest common item. (8 points)

Given an N -by-N matrix of real numbers, find the largest number that appears (at least)
once in each row (or report that no such number exists).

34

Largest common element

9 6 3 8 5

3 5 1 6 8

0 7 5 3 5

3 5 7 8 6

4 3 5 7 9

9 6 3 5

3 5 7 8

3 5 1 6

6 7 5 3

The running time of your algorithm should be proportional to N2 logN in the worst case.
You may use extra space proportional to N2.

(a) Give a crisp and concise English description of your algorithm.
Your answer will be graded on correctness, efficiency, and clarity.

(b) What is the order of growth of the worst-case running time of your algorithm as a
function of N? Circle your answer.

N N logN N2 N2 logN N3 N3 logN N4 N4 logN

