
COS 226 Algorithms and Data Structures Fall 2010

Final

This test has 14 questions worth a total of 100 points. You have 180 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet (8.5-by-11, both sides, in your own
handwriting). No calculators or other electronic devices are permitted. Give your answers and
show your work in the space provided. Write out and sign the Honor Code pledge before
turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
0 7
1 8
2 9
3 10
4 11
5 12
6 13

Sub 1 Sub 2

Total

Name:

Login ID:

Precept:

P01 11 Bob Tarjan
P02 12:30 Yuri Pritykin
P02A 12:30 Bob Tarjan
P03 1:30 Aman Dhesi
P03A 1:30 Siyu Yang

1

2 PRINCETON UNIVERSITY

0. Miscellaneous. (1 point)

Write your name and Princeton NetID in the space provided on the front of the exam, and
circle your precept number.

1. Analysis of algorithms. (12 points)

Which of the following can be performed in linear time in the worst case? For the purposes
of this question, assume P 6= NP . Write P (possible), I (impossible), or U (unknown).

−−− Find a maximum spanning tree in a connected edge-weighted graph.

−−− Find all vertices reachable from a given set of source vertices in a digraph.

−−− Find a Hamilton path in a digraph (if one exists).
A Hamilton path is a simple path that visits each vertex in the digraph exactly once.

−−− Find a Hamilton path in a DAG (if one exists).

−−− Find the strong components of a digraph.

−−− Insert N Comparable keys into a binary heap.

−−− Sort an array of N Comparable keys.

−−− Insert N Comparable keys into a binary search tree.

−−− Compute the inverse Burrows-Wheeler transform.

−−− Insert N strings into an R-way trie.
(Here, linear means linear in the sum of the lengths of the N strings.)

−−− Print the N strings in a ternary search trie in ascending order.
(Here, linear means linear in the sum of the lengths of the N strings.)

−−− Perform a nearest-neighbor query in a 2-d tree.

COS 226 FINAL, FALL 2010 3

2. Equivalence relations. (5 points)

Which of the following are equivalence relations?
Put a X next to those that are equivalence relations.

−−− v.equals(w) for objects in a Java class that correctly implements the
equals() method

−−− v.compareTo(w) < 0 for objects in a Java class that correctly imple-
ments the Comparable interface

−−− connected(v, w) in CC for connectivity in an undirected graph

−−− reachable(v, w) in TransitiveClosure for reachability in a digraph

−−− stronglyConnected(v, w) in KosarajuSCC for strong connectivity in
a digraph

Recall, an equivalence relation ≡ is a binary relation that is

• reflexive: v ≡ v

• symmetric: if v ≡ w, then w ≡ v

• transitive: if v ≡ w and w ≡ x, then v ≡ x

4 PRINCETON UNIVERSITY

3. Depth-first search. (8 points)

(a) Run depth-first search on the digraph below, starting at vertex A. Assume the adjacency
lists are in sorted order: for example, when exploring vertex F , consider the edge F → C
before F → E or F → H.

68

DFS, Fall 2010

A

G

I

B

C

D HF

E

List the vertices in preorder and postorder.

preorder: A B ___ ___ ___ ___ ___ ___ ___

postorder: G B ___ ___ ___ ___ ___ ___ ___

(b) Consider two vertices x and y that are simultaneously on the function-call stack at some
point during the execution of depth-first search from vertex s in a digraph. Which of the
following must be true?

I. There is both a directed path from s to x and a directed path from s to y.

II. If there is no directed path from x to y, then there is a directed path from y to x.

III. There is both a directed path from x to y and a directed path from y to x.

(a) I only.

(b) I and II only.

(c) I and III only.

(d) I, II and III.

(e) None.

COS 226 FINAL, FALL 2010 5

4. Minimum spanning tree. (8 points)

Consider the following edge-weighted graph with 9 vertices and 19 edges. Note that the edge
weights are distinct integers between 1 and 19.

64

Minimum Spanning Tree, Fall 2010

I

B

C

F

G

H

A

E

D

7

3

14

4

15

18

1

2

10

13

8

17

9
12

5

6

11

16

19

(a) Complete the sequence of edges in the MST in the order that Kruskal’s algorithm includes
them (by specifying their edge weights).

1 ____ ____ ____ ____ ____ ____ ____

6 PRINCETON UNIVERSITY

The edge-weighted graph from the previous page is repeated here for reference.

64

Minimum Spanning Tree, Fall 2010

I

B

C

F

G

H

A

E

D

7

3

14

4

15

18

1

2

10

13

8

17

9
12

5

6

11

16

19

(b) Complete the sequence of edges in the MST in the order that Prim’s algorithm includes
them (by specifying their edge weights). Start Prim’s algorithm from vertex A.

6 ____ ____ ____ ____ ____ ____ ____

COS 226 FINAL, FALL 2010 7

5. Shortest paths. (10 points)

Run the eager version of Dijkstra’s algorithm on the following edge-weighted digraph,
starting from vertex 0.

69

Dijkstra, Fall 2010

0

6

8

1

2

3 75

4

46

6

22 13

5

15

1

36 33

11

8

55

22 33

6

30

10

v edgeTo[] distTo[]
0 - 0.0
1 2->1 33.0 34.0
2 0->2 1.0 1.0
3 2->3 11.0 12.0
4
5 3->5 8.0 20.0
6
7
8

(a) Complete the table of edgeTo[] and distTo[] values immediately after the first 5
vertices (0, 2, 3, 5, and 1) have been deleted from the priority queue and relaxed.

69

Dijkstra, Fall 2010

0

6

8

1

2

3 75

4

46

6

22 13

5

15

1

36 33

11

8

55

22 33

6

30

10

v edgeTo[] distTo[]
0 - 0.0
1 2->1 33.0 34.0
2 0->2 1.0 1.0
3 2->3 11.0 12.0
4
5 3->5 8.0 20.0
6
7
8

(b) Complete the table of edgeTo[] and distTo[] values immediately after the 6th vertex
has been deleted from the priority queue and relaxed. Circle those values that changed
from (a).

69

Dijkstra, Fall 2010

0

6

8

1

2

3 75

4

46

6

22 13

5

15

1

36 33

11

8

55

22 33

6

30

10

v edgeTo[] distTo[]
0 - 0.0
1 2->1 33.0 34.0
2 0->2 1.0 1.0
3 2->3 11.0 12.0
4
5 3->5 8.0 20.0
6
7
8

(c) Draw the edges in the (final) shortest-paths tree with thick lines in the figure above.

8 PRINCETON UNIVERSITY

6. Polar sort. (6 points)

Consider the following proposed Comparator for sorting points in the plane by polar angle
with respect to a base point. It is based on the ccw method from lecture.

import java.util.Comparator;

public class Point {
private final int x, y;

public final Comparator<Point> POLAR_ORDER = new PolarOrder();

public Point(int x, int y) { this.x = x; this.y = y; }

// is a->b->c a counterclockwise turn?
// -1 if clockwise; +1 if counterclockwise; 0 if collinear
public static int ccw(Point a, Point b, Point c) {

double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
if (area2 < 0) return -1;
else if (area2 > 0) return +1;
else return 0;

}

// compare q1 and q2 by polar angle they make with this point
private class PolarOrder implements Comparator<Point> {

public int compare(Point q1, Point q2) {
return ccw(Point.this, q2, q1);

}
}

}

(a) What is the fatal flaw with the Comparator implementation? Note: there is nothing
wrong with the Java code (and Point.this is Java’s obscure way of referring to the
enclosing object from within a nested class). Do not worry about integer overflow.

(b) Suggest an easy approach to fixing the flaw.

COS 226 FINAL, FALL 2010 9

7. Kd-trees. (8 points)

The figures below illustrate the results of inserting points 1 through 10 into a 2d-tree.

72

Kd-tree, Fall 2010

1
2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

11

12

(a) Circle all of the the points below in the 2d-tree that are examined (not necessarily just
those inside the query rectangle) during the range search for the query rectangle specified
above.

1 2 3 4 5 6 7 8 9 10

(b) Draw the result of inserting point 11, then point 12 in the two figures above.

10 PRINCETON UNIVERSITY

8. Substring search. (6 points)

Create the Knuth-Morris-Pratt DFA for the string abcabac over the alphabet { a, b, c }
by completing the following table. As usual, state 0 is the start state and state 7 is the accept
state.

0 1 2 3 4 5 6

a 1 1 4 6

b 0 2 5

c 0 0 3 7

You may use the following partially-completed graphical representation of the DFA for scratch
work (but we will consider your solution to be the completed table above).

73

Final, Fall 2010

1 20 4 5 6 73a b c a b a c

b

c

c

a

COS 226 FINAL, FALL 2010 11

9. Regular expressions. (6 points)

Convert the regular expression (a (b c | d) *) into an equivalent NFA (nondetermin-
istic finite state automaton) using the algorithm described in lecture and the textbook by
adding ε-transition edges to the diagram below.

74

Final, Fall 2010

a (b(| d) *)c

0 1 2 3 4 5 6 7 8 9 10

12 PRINCETON UNIVERSITY

10. Substring search and pattern matching. (7 points)

For each algorithm on the left (the version discussed in lecture and the textbook),
give the best-matching worst-case order of growth on the right.

−−−−−− brute-force substring search for a query string of size M
in a text string of size N

−−−−−− Knuth-Morris Pratt substring search for a query string of
size M in a text string of size N

−−−−−− Boyer-Moore (with only mismatch heuristic) substring
search for a query string of size M in a text string of size
N

−−−−−− Monte Carlo version of Rabin-Karp substring search (that
checks only for a hash match) for a query string of size M
in a text string of size N

−−−−−− regular-expression pattern matching for a pattern of size
M on a text string of size N

−−−−−− simulating a DFA with M vertices and 2M edges on a text
string of size N

−−−−−− simulating an NFA with M vertices and 3M edges on a
text string of size N

A. M

B. N/M

C. N

D. M +N

E. MN

F. 2M

G. 2N

COS 226 FINAL, FALL 2010 13

11. Huffman codes. (5 points)

Consider the following variable-length codes for the 36-character text string:

F C F C E C A C B D E D F E A B F B A F F C D C B E D F F F C C D E E F

symbol freq code 1 code 2 code 3 code 4 code 5

A 3 110 011 011 1110 100

B 4 111 010 010 1111 101

C 8 10 00 00 00 01

D 5 010 110 101 110 110

E 6 011 001 100 10 111

F 10 00 10 11 01 00

Identify each code (on the left) with the best-matching descriptions (on the right).
Write as many letters next to each code as apply.

−−−−−− code 1

−−−−−− code 2

−−−−−− code 3

−−−−−− code 4

−−−−−− code 5

A. prefix-free code

B. Huffman code (assume that when merging the
two minimal subtries, either subtrie can become
the left or right child)

C. optimal prefix-free code

14 PRINCETON UNIVERSITY

12. Cyclic rotation of a strings. (9 points)

A string s is a cyclic rotation of a string t if s and t have the same length and s consists of a
suffix of t followed by a prefix of t. Design a linear-time algorithm to determine whether one
string is a cyclic rotation of another. You may assume they have the same length N .

For example, "winterbreak" is a cyclic rotation of "breakwinter" (and vice versa).

Your answer will be graded on correctness, efficiency, clarity, and succinctness. Let N denote
the length of s and t. For full credit, the running time of your algorithm should be proportional
to N in the worst case.

(a) Describe your algorithm in the space below.

(b) What is the order of growth of the worst-case running time of your algorithm as a
function of N? Circle the best answer.

1 logN N N logN N2 N3

COS 226 FINAL, FALL 2010 15

13. Reductions. (9 points)

Consider the following two problems:

• Multiplication. Given two N -bit integers x and y, compute x× y.

• Squaring. Given an N -bit integer x, compute x2.

We measure the running time as a function of the number of bits in the input(s). For example,
adding or subtracting two N -bit integers takes time proportional to N using the standard
grade-school algorithm.

Potentially useful facts about integers: (a + b)2 = a2 + b2 + 2ab; (a − b)2 = a2 + b2 − 2ab,
(a+ b)(a− b) = a2 − b2.

(a) Show that Squaring linear-time reduces to Multiplication. To demonstrate your
reduction, give the Multiplication instance(s) that you would construct to solve the
following Squaring instance: given x, compute x2.

(b) Show that Multiplication linear-time reduces to Squaring. To demonstrate your
reduction, give the Squaring instance(s) that you would construct to solve the following
Multiplication instance: given x and y, compute x× y.

(c) Suppose that Alice discovers an N log log logN algorithm for Squaring and Bob dis-
covers an Nα(N) lower bound for Multiplication, where α(N) is a really really slowly
growing (but super-constant) function. Which of the following can you infer from the
fact that Squaring and Multiplication linear-time reduce to one another?

I. There does not exist a linear-time algorithm for Multiplication.

II. Squaring and Multiplication have the same asymptotic complexity.

III. There exists an N log log logN algorithm for Multiplication.

(a) I only.

(b) I and II only.

(c) I and III only.

(d) I, II and III.

(e) None.

16

