HTTP

Reading: Section 9.1.2 and 9.4.3

COS 461: Computer Networks
Spring 2013

Two Forms of Header Formats

* Fixed: Every field (type, length) defined

— Fast parsing (good for hardware implementations)
— Not human readable

— Fairly static (IPv6 ~20 years to deploy)
— E.g., Ethernet, IP, TCP headers

* Variable length headers

— Slower parsing (hard to implement in hardware)
— Human readable

— Extensible

— E.g., HTTP (Web), SMTP (Email), XML

HTTP Request

request
line

header
lines

Entity Body

“er” is \r “1£” is \n

sp is ™ ™

Outline

* HTTP overview
* Proxies

* HTTP caching

HTTP Basics (Overview)

e HTTP over bidirectional byte stream (e.g. TCP)
¢ Interaction

— Client looks up host (DNS)

— Client sends request to server

— Server responds with data or error

— Requests/responses are encoded in text

 Stateless

— HTTP maintains no info about past client requests

— HTTP “Cookies” allow server to identify client and
associate requests into a client session

HTTP Request

* Request line
— Method
* GET —return URI

* HEAD —return headers only of GET response
* POST - send data to the server (forms, etc.)
— URL (relative)
* E.g., /index.html
— HTTP version

HTTP Request (cont.)

* Request headers

— Variable length, human-readable

— Uses:
* Authorization — authentication info
* Acceptable document types/encodings
* From — user email
* If-Modified-Since
 Referrer — what caused this page to be requested
* User-Agent — client software

* Blank-line
* Body

HTTP Request Example

GET /index.htm| HTTP/1.1
Host: www.example.com

HTTP Request Example

GET /index.html HTTP/1.1

Host: www.example.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Connection: Keep-Alive

HTTP Response

Entity Body

HTTP Response

* Status-line
— HTTP version (now “1.1”)
— 3 digit response code
¢ 1XX — informational
¢ 2XX —success
— 200 OK
* 3XX —redirection
— 301 Moved Permanently

— 303 Moved Temporarily
— 304 Not Modified
* 4XX — client error
— 404 Not Found
* 5XX — server error
— 505 HTTP Version Not Supported

— Reason phrase n

HTTP Response (cont.)

* Headers
— Variable length, human-readable
— Uses:
Location - for redirection
Server — server software
WWW-Authenticate — request for authentication
Allow - list of methods supported (get, head, etc)
Content-Encoding - E.g x-gzip
Content-Length
Content-Type
Expires (caching)
Last-Modified (caching)

¢ Blank-line
* Body

HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1
OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24

Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

How to Mark End of Message?

* Close connection
— Only server can do this
— One request per TCP connection. Hurts performance.

e Content-Length
— Must know size of transfer in advance

¢ No body content. Double CRLF marks end
— E.g., 304 never have body content

* Transfer-Encoding: chunked (HTTP/1.1)

— After headers, each chunk is content length in hex, CRLF,
then body. Final chunk is length 0.

Example: Chunked Encoding

HTTP/1.1 200 OK <CRLF>

Transfer-Encoding: chunked <CRLF>

<CRLF>

25 <CRLF>

This is the data in the first chunk <CRLF>
1A <CRLF>

and this is the second one <CRLF>

0 <CRLF>

* Especially useful for dynamically-generated content, as
length is not a priori known

— Server would otherwise need to cache data until done generating,
and then go back and fill-in length header before transmitting

Outline

* HTTP overview
* Proxies

e HTTP caching

Proxies

* End host that acts a broker between client and
server
— Speaks to server on client’s behalf
* Why?
— Privacy
— Content filtering
— Can use caching (coming up)

Proxies (Cont.)

* Accept requests

from multiple origin
clients server

* Takes request
and reissues it to
server

* Takes response
and forwards to

client

client origin

server

Assignment 1: Requirements

Non-caching, HTTP 1.0 proxy
— Support only GET requests

— No persistent connections: 1 HTTP request per
TCP connection

Multi-process: use fork()

Simple binary that takes a port number
— ./proxy 12345 (proxy listens on port 12345)

Work in Firefox & Chrome

— Use settings to point browser to your proxy

Assignment 1: Requirements

* What you need from a client request: host,
port, and URI path

— GET http:// :80/ HTTP/1.0

* What you send to a remote server:

— GET / HTTP/1.0
Host: 180
Connection: close

* Check request line and header format

Forward the response to the client

Why Absolute vs. Relative URLs?

First there was one domain per server
— GET /index.html

Then proxies introduced
— Need to specify which server
— GET http://www.cs.princeton.edu/index.hml

Then virtual hosting: multiple domains per server
— GET /index.html
— Host: www.cs.princeton.edu

Absolute URL still exists for historical reasons and
backward compatibility

Assignment 1: Requirements

* Non-GET request?
— return “Not Implemented” (code 501)

* Unparseable request?
— return “Bad Request” (code 400)

* Use provided parsing library

Advice

Networking is hard
— Hard to know what’s going on in network layers
— Start out simple, test often

Build in steps

— Incrementally add pieces

— Make sure they work

— Will help reduce the effect of “incomplete”
information

Assume teaching staff is non malicious or

trying to trick you

Assignment 1 — Getting Started

* Modify Assn 0 to have server respond

— Simple echo of what client sent

* Modify Assn 0 to handle concurrent clients

— Use fork()

* Create “proxy” server

— Simply “repeats” client msg to a server, and
“repeats” server msg back

 Client sends HTTP requests, proxy parses

Outline

* HTTP overview
* Proxies

* HTTP caching

HTTP Caching

* Why cache?
— Lot of objects don’t change (images, js, css)
— Reduce # of client connections
— Reduce server load
— Reduce overall network traffic; save $$$

Caching is Hard

 Significant fraction (>50%7?) of HTTP objects uncachable
— Dynamic data: Stock prices, scores, web cams
— CGl scripts: results based on passed parameters
— Cookies: results may be based on passed data
— SSL: encrypted data is not cacheable
— Advertising / analytics: owner wants to measure # hits
* Random strings in content to ensure unique counting

* Want to limit staleness of cached objects

Validating Cached Objects

* Timestamps
— Server hints when an object “expires” (Expires: xxx)

— Server provides last modified date, client can check
if that’s still valid

— Why the server’s timestamp?
* Problems
— Server replicas won’t agree on time

— Objects may go back to previous value, and using
time will have you redownload the object

* There are other ways (look up ETags)

Example Cache Check Request

GET / HTTP/1.1

Accept-Language: en-us

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com

Connection: Keep-Alive

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

Web Proxy Caches

* User configures browser: origin
: server
Web accesses via cache

Browser sends all HTTP
requests to cache

— Object in cache: cache
returns object

Summary

* HTTP: Simple text-based file exchange protocol

— Support for status/error responses, authentication,
client-side state maintenance, cache maintenance

* How to improve performance
— Proxies
— Caching
— Persistent connections (more later)

| |
— Else: cache requests "]
. - client
object from origin, origin
then returns to client server
3
Pop Quiz!

* Advantage of “fast retransmit” over timeouts?
* When are fast retransmits possible?

* When are timeouts particularly expensive?

