

Routing vs. Forwarding • Routing: control plane - Computing paths the packets will follow - Routers talking amongst themselves - Creating the forwarding tables • Forwarding: data plane - Directing a data packet to an outgoing link - Using the forwarding tables

Three Issues to Address

- What does the protocol compute?
 - -E.g., shortest paths
- What algorithm does the protocol run?
 - E.g., link-state routing
- How do routers learn end-host locations?
 - −E.g., injecting into the routing protocol

What Does the Protocol Compute?

Different Types of Paths

- · Static model
 - What is computed, not how computation performed
- Trade-offs
 - State to represent the paths
 - Efficiency of the paths
 - Ability to support multiple paths
 - Complexity of path computation

Spanning Tree

- One tree that reaches every node
 - Single path between each pair of nodes
 - No loops, so can support broadcast easily
 - But, paths are long, and some links not used

Shortest Paths

- Shortest path(s) between pairs of nodes
 - A shortest-path tree rooted at each node
 - Min hop count or min sum of edge weights
 - Multipath routing is limited to Equal Cost MultiPath

Locally Policy at Each Hop

- · Locally best path
 - Local policy: each node picks the path it likes best
 - ... among the paths chosen by its neighbors

Locally Policy at Each Hop

- · Locally best path
 - Local policy: each node picks the path it likes best
 - ... among the paths chosen by its neighbors

End-to-End Path Selection

- End-to-end path selection
 - Each node picks its own end to end paths $\,$
 - ... independent of what other paths other nodes use
 - More state and complexity in the nodes

How to Compute Paths?

13

Spanning Tree Algorithm

- Elect a root
 - The switch with the smallest identifier
 - And form a tree from there
- Algorithm
 - Repeatedly talk to neighbors
 - "I think node Y is the root"
 - "My distance from Y is d"
 - Update based on neighbors
 - Smaller id as the root
 - Smaller distance d+1

Used in Ethernet LANs

Spanning Tree Example: Switch #4

- Switch #4 thinks it is the root
 - Sends (4, 0, 4) message to 2 and 7
- Switch #4 hears from #2
 - Receives (2, 0, 2) message from 2
 - Thinks #2 is root and it's one hop away
- Switch #4 hears from #7
 - Receives (2, 1, 7) from 7
 - But, this is a longer path, so 4 prefers 4-2 over 4-7-2
 - And removes 4-7 link from the tree

15

Shortest-Path Problem

- Compute: path costs to all nodes
 - From a given source u to all other nodes
 - Cost of the path through each outgoing link
 - Next hop along the least-cost path to s

16

Link State: Dijkstra's Algorithm

- Flood the topology information to all nodes
- Each node computes shortest paths to other nodes

Initialization

S = {u} for all nodes v if (v is adjacent to u) D(v) = c(u,v)

else D(v) = ∞

Loop

add w with smallest D(w) to S update D(v) for all adjacent v: $D(v) = min\{D(v), D(w) + c(w,v)\}$ until all nodes are in S

Used in OSPF and IS-IS

17

Source Routing

- · Similar to end-to-end signaling
 - But the data packet carries the hops in the path
- End-host control
 - Tell the end host the topology
 - Let the end host select the end-to-end path
- Variations of source routing
 - Strict: specify every hop
 - Loose: specify intermediate points

Used in IP source routing (but almost always disabled)

29

Learning Where the Hosts Are

Conclusions: Many Different Solutions • Ethernet LAN and home networks - Spanning tree, MAC learning, flooding • Enterprise - Link-state routing, injecting subnet addresses • Backbone - Link-state routing inside, path-vector routing with neighboring domains, and iBGP dissemination • Data centers - Many different solutions, still in flux