A 1 g() I 1 { h Ims ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» introduction
» digraph API
» digraph search
» topological sort

» sfrong components

4.2 DIRECTED GRAPHS

» infroduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outdegree 4
and indegree 2

: N\
(52

directed path @
from0to2

(3 O e ®

4 <«<— directed cycle

(n)

Road network

Vertex = intersection; edge = one-way street.

vJ Trwe Ot N I ~
t § > % S @ Gfoo /
H 1 % & 5 MNe
E S = g S S
g (= 7, &
S (4 J 2 o P
-~ 2 @)(; ey ~ N ©
Vestry s 5 2 Canal St & Gy, §<b
— T & Station [1] ?'-& OU\S,’ ~
Vi @
$. estry St N "e,@ 6§ 4 ~ /
AN
ai h f « ?‘.\0 Canal St
-aight St 5 Station [4.C E] 7 ~
@ Laight St = >¢§ \ m s 7
o
r Laight
g ; N ght St - T O/éqq
@ t 1) «~ ight St — Sy
T — f 57 e 7 5
- a = & ~
P Hubert sy y [S z §
- - 4 13 ® =
(3] w — [%5) S0 0
S 2 = =~ York S S Sy @ v
: 2 § o $ 5 $:
2] S o o) & 2
B kS D ; s &
each 7
St I N t 7 &
. Ericsson St . ot y
¥l
' . 60-9 — : %eoe,ds o y
Mogre “ Cy / f 'S, (o}
St 3 &> 09/0 v Yy
-
- g \ ,]
! N Moore s ‘/sps
& N Moore g > S /7 /’9/-0«6\, f
c Canal St Stati
8 f / g N (NQR.W]
k=3) =
> Franklin St = Franklin'St & s ~
b =) == Station M g§ © 9 [/2/9/4, /
g Franklin St m O R)3> \8 er&f
: N2 2 S x &
@ INRLS 5 S
armson g o ; - cg § . &b
Harrison sy {s, & @
e 23y, > . t By,
78 " ks 7 o
l @ Sy AN .
o N 4
g § u,
Kl _{.3 ©2008 Google - Map data ©20Q$ Sanbori, NAVTEQ™ - Terms of Use

Taxi flow patterns (Uber)

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

Bonla Cove Treasure
Island
Golden Gate il
S 0.03r m SF: Financial District
Presidio TR\ > 2 4 £ o
South Bay /; TN oA B NYC: Financial District
=Y T
— — s
- = -

e qE, 0.02
G . Q
G - b~
\ GatePar. o
v i [-
2 S
o e arm Water t

ve Park g_ 0.01
Sunsét . / (o]
e o et
=X X o

|
P 4 Wit : 0 sl a Bagin
WLz ~\q: 1 1 1 1 1
"y / \ Sun Mon Tue Wed Thu Fri Sat Sun

~ Day of Week (beginning at 0:00)
Braoks Park o =)
Amazon \

P
Recreation Area

Uber cab service
» Left Digraph: Color is the source neighborhood (no arrows).
* Right Plot: Digraph analysis shows financial districts have similar demand.

Reverse engineering criminal organizations (LogAnalysis)

“The analysis of reports supplied by mobile phone service providers makes it possible to reconstruct

the network of relationships among individuals, such as in the context of criminal organizations. It

is possible, in other terms, to unveil the existence of criminal networks, sometimes called rings,

identifying actors within the network together with their roles” — Cantanese et. al

wmn
anted .".” .au;: Seoo)
e i e .-1 $roa?
“s'h‘"t il : ' 421 S
a0l xwm focoe
wn l,.c,.
i a
e ‘ bl o
urm 3-;“&\ / “” 186 1“”‘"
I n
wm
- o em 9 seone
arss el »
’ M ¥ k\‘,“
LR R \
20001 dan) /4 \ \ \ sy 21004
’ Y08 -
/ o san
zlllli —_— /m,, | / / e | *
- Sﬂun ool v Fena \‘ 1128
z“i“/ Sl ‘], -
san . hcok ntcl X Teas "
— W yusn
e e - ‘“ i »
GIKM“ “. 9
FLYTH PN LTI
’ wm BT \ A AN
ieass ' / T | \ nin
¥ 1o 7508 \ e e
i \ . A
" am e ’ 1407 434 281 %07
“"” JEYTRY
uunt 1“‘“""' o TN T Q2010
1 ek o0 h'u.u;u a0

oo

LT 52988 b:uuc 6226 Hate

i
" 160 .
s ' Qe
e

1 eooe
e

wy B
Forensic Analysis of Phone Call Networks, Salvatore Cantanese,
http://arxiv.org/abs/1303.1827

Field Description
IMEI IMEI code MS
called called user
calling calling user

date/time start | date/time start calling (GMT)

date/time end date/time end calling (GMT)

type sms, mms, voice, data etc.
IMSI calling or called SIM card
CGI Lat. long. BTS company

Table 1 An example of the structure of a log file.

Combinational circuit

Vertex = logical gate; edge = wire.

Cin

e

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happeningoccurrence occurrent natural_event

miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action

damage harm impairment transition increase forfeitforfeiture sacrlﬁce action
/ /]\ resistance opposmon 4 transgression
leap jump saltation jumpleap
change
/ \
demotion variation

motion movement move

TS~

L locomotion travel descent
: "J runrunning jump parachuting

i

http:/ /wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide

Crime and Narcotics
Coalition Forces & Actions
Physical Environment

Afghanistan Stability / COIN Dynamics Sy S | e
: :fogvhear:iz‘teanr: Security Forces
! Insurgents
n
u

OUTSIDE SUPPORT
TO INSURGENT S i

Crime Ops

et ,A'\\ S
/casya ties ISR/ Open Total @ ‘
Source 0P54\SE§:1£'V T Tamed— >
«‘ Ca{:ccliltsy'i\ ‘}‘ FACTIONS

,\ \‘ Sv{&ep Ops Ins. DamageS _, Fear of
eal
ANSF Unit Coalition ‘
Coalition Leader'snilr/\ SE Sle)cun %& Repercussions—"{ ‘\ Outside
& Tactical . <! (Ho%) P “ Haveps | Ability to ippory
i Effe P Enablement
es &

n __»-&Casualties © Goy" t/ANSF/
X ofIns.

<ol AN
T SF A Ins. Coordination
Uni Coalition Territory Not Olfensiv Amongins. Insurgent
i 0 I X resence actions i
Oparadon Coalition Afd uslmen': Skill, D ANGE Under a’“ 4'—/(Clear & Hold) B Lealz;]esfsh A EI{nsurg‘_en(Adsgmla"ge
A |/ /it X7 Coigol {Atghan A Tiaining, S Recung,
é]g? f Al ANS F ?::ee akistaii) & Experience Manpower \

ffort 8 NSF <~ Training & < [
i fo Ins, Provision)\\(&ISR
i \ Coaliﬁor:"%:aés:g’ﬁg?‘IWI NSTITUTIONAL “" o B OfCovis ‘ Pg;g'afgﬁ;'; INSURGENTS
A(,:,oa(l;lsm Coa(!ition Dﬂ'ﬂgfs' L/Co’rrﬁé n & \li \‘ D 2 riorities N
& & Aid ‘

Ins. Strategic Effectiveness’

amage
Use of Force Ins. Targeted

\
NARCOTICS

i al R.O.L. Poli Communl| s
Expetience_Ca Favoritis Execution & Afiliation w/ by Ins. Pl Funding &
; ANSF Faimess 4 Progress/ Materia)

i . Perceived upport Relati: insurgents | Likelihood o

on * Funding t for Gout Bolative ~~Tinsur CrimelViolence

to Ads
‘Jo lequacy /?3[’9‘}2;','{:9 /Ins. Support

for Payment

Relative Gov’t & Coalitio Perception of

CAPACITY & Coalition Message fnsurgent
(LPRIOR'TI ES A((i;v‘i Acceptance of

OVt VS
lev. ?}asr Coalition/Homelan Insurgents

Investment

Strength &

/ W\
POPULATION ™
CONDITIONS

: ; o,
Asigry Afghan Metho: OV E RA L L

d
“imeas GOVERNMENT
US Gov't CENTRAL ;};:;Q;g‘l&\CAPACITY /& BELIEFS Fear of Ins.
Sphaton’ GOV'T] leive A Repercissions
impack éov'l‘\}v‘t vs In7 ‘ ‘
4

vels)

Population Po, u|migNeutraI10n Population Population
Sﬁ;g:ﬂ}’ng Sym';:alhiling the Fence Syrﬁ)alhizing Sﬁ;g‘(’)er{l)’“g
Gov't& SF wi Govt whinsurgents Insurgency/f ||

X~
POPULAR ~ el

Funding AN
Adequady /! Gov't x
Breadth of b - Integration of vsins o Terrain
US Domestic |Coalition G&V‘Tf@'"“‘ﬂ Lo tobal ' Western > ofGovtvs. Harshness Duration
b 1t ; sl 3 L Insurgent Path
Perceived | Support Vetting, and gt Structures % Bk X Perception of - SUPPORT AT Eheet) Opepation

& Commitment

o

Cost/Benefit Hiripg Workforce
& Support % skill & Avai
¥ US Domesticl| Transparency
of Gov't

Intl Strategic, f Gov't Overall Gov't

X

Legitvs

Strength of
Illegit

’}{
X Religious

ommun I
&Dim 'vrstments Policy Quality Execution.

COALITION 8Fgimess _ Capaciy & seibgy SN SaiSfaction g
o nvestment Structres Culural Erosio ility wi Gains in A\

isplacement on S ity, Servi
sDOMESTIC \ KEmployment - Visible Gamns
Gov't/ Tob. /4 b_’In Securi v/‘///
wi Gov't hd
N ;

‘l Perception ' Fraction of
Of Gov't Workforce
Strength And Agric.

&Intent i

rocesses & Professionalism _Reach,

SUPPORT - cohcor Ethnic/Tribal Services

Rivalry~__ Employmeny

Coanuon Corruption &

Expectations
for Security,
e Services,

Econ. -
Advisol i A
&Aid

v Ops_ Tribal Favoritisr Structuress
Infgast[uclure, Beliefs
ervic

B S~
Infr, Services, Econ: ‘
Policy & Execution et

IPerceived Fairness

WORKING DRAFT - V3

Consulting
Group
© PA Knowledge Limited 2009 Page 22

http:/ /www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

Digraph applications

digraph

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

vertex

street intersection

web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

directed edge

one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

Jjump

Some digraph problems

Path. Is there a directed path from s to ¢? ° H‘I*I*I:I:Iﬁz—'

L. %LLMIH'
IS0 6 0 0 U S O

Shortest path. What is the shortest directed path from sto ¢?

Topological sort. Can you draw a digraph so that all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from vto w?

PageRank. What is the importance of a web page?

4.2 DIRECTED GRAPHS

» digraph API

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Digraph API

public class

Digraph

void
Tterable<Integer>
int

int

Digraph

String

Digraph(int V)
Digraph(In 1in)
addEdge(int v, int w)
adj(int v)

VO

EO

reverse()

toString()

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v

=0; v < G.VO; v++)

for (int w : G.adj(v))
StdOut.printin(v + "->" + w);

create an empty digraph with V vertices
create a digraph from input stream
add a directed edge v—w
vertices pointing from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from

A

input stream

print out each

Pl
Y

edge (once)

Digraph API

tinyDG. txt
V\13 -
22 <

?})

e

=

5@ &
o

e -
OCROONORONWN

=
N

e,
C OO WAPRONOWONRNOOWN A

S o v WD

In in = new InCargs[0]);

% java Digraph tinyDG.txt

0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4

11->4
11->12
12-9

A

Digraph G = new Digraph(in);

for (int v = 0; v < G.VO; v++)

for (int w : G.adj(v)) <
StdOut.printin(v + "->" + w);

read digraph from

input stream

print out each

edge (once)

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

R

®

@/’

(6=(®)

adj[

]

O 00 N o v A W N B O

=
o

=
=

=
N

77T TN

5 1
0 3
5 2
3 2
4

9 |4
6 9
6

11 10
12

4 12

Do you slumber?

Suppose we are given an arbitrary Digraph G and a path of length V given
by int[] P. ~[5}{1]

~(0)—[3]
~[5—{2]
~31-{2]
~(4]

1]

o
-
—

N 050

~[o {4 +{8 (0]

O N O v A W N B O

77NN

®

(2)
Oz e :

05423168791011 12

~[6]—~{9]
(6]
~[12}—~{20]
~[12]
~[4—22]
=[]

(<]

pollEv.com/jhug text to 37607

Q: What is the worst case run time to check validity of a path P for a

general graph with E edges and V vertices?
A. E [41138] C. EV [41146]
B. V [41142] D. E+V [41182]

Do you slumber?

Suppose we are given an arbitrary Digraph G and a path of length V given
by int[] P. ~[5}{1]

~(0)—[3]
~[5—{2]
~31-{2]
~(4]
~[o {4 +{8 (0]
~(6—{9]
(6]
~[11j—+{19]
(2]
~[4 =]
nEl

1]

o
-
—

R
D (63=(®)

(2)
@/ ﬁ

05423168791011 12

O N O v A W N B O

77NN

(<]

pollEv.com/jhug text to 37607

Q: What is the worst case run time to check validity of a path P for a

general graph with V vertices?
A. 1 C. V2
B. V

Adjacency-lists graph representation (review): Java implementation

public class Graph
{

private final int V;
private final Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v =0; v <V; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w)
{
adj[v].add(w);
adj[w].add(v);
}

public Iterable<Integer> adj(int v)
{ return adj[v]; }

adjacency lists

create empty graph

with V vertices

add edge v-w

iterator for vertices

adjacent to v

Adjacency-lists digraph representation: Java implementation

public class Digraph
{

private final int V;
private final Bag<Integer>[] adj;

public Digraph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w)
{
adj[v].add(w);
}

public Iterable<Integer> adj(int v)
{ return adj[v]; }

adjacency lists

create empty digraph
with V vertices

add edge v—w

iterator for vertices

pointing from v

Digraph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices pointing from v.
« Real-world digraphs tend to be sparse.

AN

huge number of vertices,

small average vertex degree

: insert edge edge from iterate over vertices
representation .
fromvtow v to w? pointing from v?
list of edges E 1 E E
adjacency matrix V2 1t 1 Vv
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

4.2 DIRECTED GRAPHS

A lgori thms » digraph search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from s along a directed path.

%— -« @ >0 »>0< @< ¢ >‘
I A A A A

Y

I—> QP Q<@ <0 @
A A A A

Y Y

r< o<—@ >’ >’ >@—>@0—>@

Y Y Y Y

o> @ < +< r< r >¢<—’—>‘

Y Y Y

@< O >0 >0 <« 0 > >Q—>@
A A A

| Y Y

’—»‘—»+< r >’ >¢<—’<—0

Y Y

I—>¢—>¢<—0—>O<—I—>O<—6

22

Depth-first search in digraphs

Same method as for undirected graphs.
* Every undirected graph is a digraph (with edges in both directions).
 DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w pointing from v.

Difficulty level.
* Exactly the same problem for computers.
* Harder for humans than undirected graphs.
- Edge interpretation is context dependent!

23

The

man-machine

[E— I< I« o< I« I >@
A A

\

® >0< @& >0 >0< O< O »>0O
A A A A

Y Y

S L e
A A A A

\ Y \

<0< >0 >0 >0 >0 >

A A A A

\ Y Y \

. . r< ’ >‘<—’—>‘

\ \ Y Y

O<—0 >0 >0<—0 >0 >0 >9¢
A A A + A

\ | Y

¢ >0 >0« ’ >’ >¢<—’<—‘

Y Y \

I—»b—»‘<—0—>‘ <0

Difficulty level.

« Exactly the same problem for computers.

* Harder for humans than undirected graphs.

- Edge interpretation is context dependent!

24

Depth-first search demo

To visit a vertex v : @
e Mark vertex v as visited.

* Recursively visit all unmarked vertices pointing from v.

0
OMp¢

9! o,
ol (H—iz

a directed graph

25

Depth-first search demo

To visit a vertex v:
 Mark vertex v as visited.
* Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTol[]

o
—
I

1
a reachable o) N

from vertex 0

© v p W O

Y

reachable from 0 11

M M =M\ =M™ M m M - - - - -

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{
private boolean[] marked; <«<——F+— true if connected to s
public DepthFirstSearch(Graph G, int s)
{
marked = new boolean[G.V()]; € conftrucmr UELLE
d'FS (G S) . vertices connected to s
}
private void dfs(Graph G, int v) <«<——F— recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
}
public boolean visited(int v) «—+ clientcan ask whether any
{ return mar.ked [V] . } vertex is connected to s
}

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

public class DirectedDFS
{

private boolean[] marked; <«<——+— true if path from s

public DirectedDFS(Digraph G, int s)

{
truct k
marked = new boolean[G.V()]; «—— CRIRuEtormarks
dfs(G, s): vertices reachable from s
}
private void dfs(Digraph G, int v) <«<——F— recursive DFS does the work
{

marked[v] = true;
for (int w : G.adj(v))
if (Imarked[w]) dfs(G, w);
}

public boolean visited(int v) «—+ clientcan ask whether any

{ return marked[v]; } vertex is reachable from s

Reachability application: program control-flow analysis

Every program is a digraph.

* Vertex = basic block of instructions (straight-line program).

* Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

e Cow.java:5: unreachable statement

Infinite-loop detection.

Determine whether exit is unreachable.

Trivial?

Doable by student?
Doable by expert?
Intractable?
Unknown?
Impossible?

1121314110

30: t3<=13

1112131516 110111

32: 7<= 16

11213 15t7 110111

40: <=1114

1112131516 11011

34: <= 17

36:

t23t5t1o

<=

2o

28:t6<= 15

0: <=
o
42 <= A
2:183<=
131011
v
11121314110 4: th<=
1341011
v
16: t5<= t2t4 6:t1<=r0
134t
1121314 110 A
niziat 8:<=titd
1112131415110 msvmn
10: 2<=n1
18: 8<= 15 R
L]
1213141518110 L:'ioi
20: 19<= 18 121314 110

111213141519 110

22:<=19

112131415110

24: <= 14

11121315110 t11

12310111

Nila 510 t11

26: <=

t1 l2t314%‘ }BHOHI

38: t4<=t11

14: <=

3110

13110

44: 10 <= t10

oo

310

'

46: <= t3

rort

48: 10 <= r1r0

29

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.
* Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

30

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
 Mark: mark all reachable objects.
« Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

Wl j/f

SlOOJ

31

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

v+ Reachability.
* Path finding.
 Topological sort.

Directed cycle detection.

Basis for solving difficult digraph problems.
« 2-satisfiability.
* Directed Euler path.
« Strongly-connected components.

SIAM J. CompurT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k4 for some constants k, , k,, and k5, where Vis the number of vertices and E is the number
of edges of the graph being examined.

32

Breadth-first search in digraphs

Same method as for undirected graphs.
* Every undirected graph is a digraph (with edges in both directions).
 BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to £ + V.

33

Directed breadth-first search demo

Repeat until queue is empty: @
« Remove vertex v from queue.
* Add to queue all unmarked vertices pointing from v and mark them.

tinyDG2. txt

@ > 2 P> E
8/

50

2 4

3 2

12

01

v 4 3

: T >

02

graph G

Directed breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.

* Add to queue all unmarked vertices pointing from v and mark them.

0 v edgeTo[] distTol]
0 - 0
1 0 1
2 0 1
3 4 3
4 2 2
<::f‘r———_——_4::>“L-----"'{::> : 5 .

done

35

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other vertex.

Ex. S={1,7,10}. @
e Shortest path to 4 is 7—6—4. @

e Shortest path to 5 is 7—=6—0—5. @

(2)
» Shortest path to 12 is 10—12. 9
O~
1D

Q. How to implement multi-source shortest paths algorithm?

A. Use BFS, but initialize by enqueuing all source vertices.

36

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
 Choose root web page as source s.
* Maintain a Queue of websites to explore.
* Maintain a SET of discovered websites.
 Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

37

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(); —
SET<String> marked = new SET<String>(Q); «—F
String root = "http://www.princeton.edu";
queue.enqueue(root); -—
marked.add(root);
while (!queue.isEmpty())
{
String v = queue.dequeue();
StdOut.println(v); ‘
In in = new In(v);
String input = in.readAl1Q);
String regexp = "http://Q\w+\\.)+\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find())
{
String w = matcher.group();
if (!'marked.contains(w))
{
marked.add(w) ;
queue.enqueue (w) ; DEmme T—
}
}
}

queue of websites to crawl
set of marked websites

start crawling from root website

read in raw html from next

website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

[crude pattern misses relative URLs]

if unmarked, mark it and put

on the queue

38

BFS Webcrawler Output

http://www.princeton.edu

http://www.w3.0rg

http://ogp.me

http://qgiving.princeton.edu

http://www.princetonartmuseum.org

http://odoc.princeton.edu

http://blogs.princeton.edu

http://www.facebook.com

http://twitter.com

http://www.goprincetontigers.com

http://library.princeton.edu

http://helpdesk.princeton.edu

http://tigernet.princeton.edu

http://alumni.princeton.edu

http://gradschool.princeton.edu

http://vimeo.com

http://princetonusg.com

http://artmuseum.princeton.edu

http://jobs.princeton.edu

http://www.youtube.com

http://deimos.apple.com

http://geprize.org

http://en.wikipedia.org

39

DFS Webcrawler Output

http://www.princeton.edu

http://deimos.apple.com [dead end]

http://www.youtube.com

http://www.google.com

http://news.google.com

http://csi.gstatic.com

http://googlenewsblog.blogspot.com

http://labs.google.com
http://groups.google.com

http://img1.blogblog.com

http://feeds.feedburner.com

http://buttons.googlesyndication.com

http://static.googleusercontent.com

http://searchresearchl.blogspot.com

http://feedburner.google.com

http://www.dot.ca.gov

http://www.getacross80.com

http://www.TahoeRoads.com

http://www.lLakeTahoeTransit.com

http://www.laketahoe.com

http://ethel.tahoequide.com

http://fusion.google.com

http://insidesearch.blogspot.com

http://agoogleaday.com

40

4.2 DIRECTED GRAPHS

Algorithms

» topological sort

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

S vl M~ W N

Algorithms

. Complexity Theory

Artificial Intelligence
Intro to CS
Cryptography
Scientific Computing

Advanced Programming

1/

%

e

®

tasks

precedence constraint graph

OICxC,

feasible schedule

42

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

!
!
Qlo¥e

directed edges DAG

Solution. DFS. What else?

topological order

Topological sort demo

* Run depth-first search. @
e Return vertices in reverse postorder.

a directed acyclic graph

44

Topological sort intuitive proof

* Run depth-first search.
e Return vertices in reverse postorder.
 Why does it work?
- Last item in postorder has indegree 0. Good starting point.
- Second to last can only be pointed to by last item. Good follow-up.

postorder

4 1 2 5 0 6 3

topological order

36 05214

6 See book / online slides for foolproof full proof.
45

Topological sort demo

postorder

4 1 25 06 3

topological order

OO0

3 605 21 4

pollEv.com/jhug text to 37607 topological order

Q: Is the reverse postorder the only valid topological order for this graph?
A. No [452392]
B. Yes [452393]

46

Topological sort demo

postorder

4 1 25 06 3

®-®

topological order

36 0521 4 0

pollEv.com/jhug text to 37607

topological order

Q: Is the reverse postorder the only valid topological order for this graph?
A. No [452392]

Example: Could move 1 down one step. 0 — 1 still points up.

47

Depth-first search order

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder(Digraph G)
{

reversePost = new Stack<Integer>();
marked = new boolean[G.V(Q)];
for (int v=0; v <GVQO; v++)
if (Imarked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (Imarked[w]) dfs(G, w);
reversePost.push(v);

}

public Iterable<Integer> reversePost()
{ return reversePost; }

returns all vertices in

“reverse DFS postorder”

48

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

 If directed cycle, topological order impossible.

* If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

49

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java
{ A.java:1l: cyclic inheritance
involving A
} public class A extends B { }
A
1 error

public class B extends C

{
}

public class C extends A

{
}

50

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

O Workbook1
<> A B C D

1 "=B1+1" "=Cl1+1" "=A1+1"

2

3

4

5

6

7 Microsoft Excel cannot calculate a formula.

u Cell references in the formula refer to the formula's
8 e result, creating a circular reference. Try one of the
9 following:
« If you accidentally created the circular reference, click
10 OK. This will display the Circular Reference toolbar and
help for using it to correct your formula.
1 1 « To continue leaving the formula as it is, click Cancel.
12 (" Cancel) (OK)
13
14
15
16
17
18
"1 Sheetl ' Sheet2 Sheet3 [

51

4.2 DIRECTED GRAPHS

Algorithms

» sfrong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v. Every node is strongly connected
to itself.

Key property. Strong connectivity is an equivalence relation:
* vis strongly connected to v.
* If vis strongly connected to w, then w is strongly connected to v.
e If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Jo

S o
oL
(1]

(19
O @

Examples of strongly-connected digraphs: 1 strong component

0§

o

54

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v. Every node is strongly connected

to itself.

pollEv.com/jhug text to 37607

Q: How many strong components does a DAG on V vertices and E edges have?
A. O [452453] C. E [452460]
B. 1 [452459] D. V [452461]

55

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

1 2 3 4 5 6 7 8 91011 12
id[] 0O 0 0001 11 2 2 2 2

public int connected(int v, int w)
{ vreturn id[v] == id[w]; }

A
I

constant-time client connectivity query

v and w are strongly connected if there is both a directed

path from v to w and a directed path from w to v

ol o oRS

Y ke
On®

5 strongly-connected components

strongly-connected component id (how to compute?)
6 7 8 9 10 11 12
3 4 3 2 2 2 2

1 2 3 4 5
idf[] 1 0 1 1 1 1

public int stronglyConnected(int v, int w)
{ vreturn id[v] == id[w]; }

A
I

constant-time client strong-connectivity query

56

Strongly connected components

Analysis of Yahoo Answers
 Edge is from asker to answerer.
* “Alarge SCC indicates the presence of a community where many users

interact, directly or indirectly.”

Table 1: Summary statistics for selected QA net-

works
Category | Nodes Edges | Avg. | Mutual SCC
deg. edges
Wrestling | 9,959 56,859 | 7.02 1,898 | 13.5%
Program. | 12,538 | 18,311 | 1.48 0| 0.01%
Marriage | 45,090 | 164,887 | 3.37 179 | 4.73%

Knowledge sharing and yahoo answers: everyone knows something, Adamic et al (2008)

Strongly connected components

Understanding biological control systems
* Bacillus subtilis spore formation control network.
» SCC constitutes a functional module.

M
‘ : Phosphorylation
mmm SPOOE B cesoeeotysen

- Regulated by sigH : Blocks activity

- Regulated by both \l/ : ¢* Transcription

\L : o Transcription

Josh Hug: Qualifying exam talk (2008)

58

Strong components algorithms: brief history

1960s: Core OR problem.
 Widely studied; some practical algorithms.
 Complexity not understood.

1972: linear-time one-pass DFS algorithm (Tarjan).
e Classic algorithm.
* Level of difficulty: Algs4++.
 Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
* Forgot notes for lecture; developed algorithm in order to teach it!
» Later found in Russian scientific literature (1972).

1990s: easier one-pass linear-time algorithms.
* Gabow: fixed old OR algorithm.
e Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

59

Intuitive solution to finding strongly connected components.

60

Intuitive solution to finding strongly connected components.

Example
Run DFS(1), get the SCC: {1}.
Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC.
Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}.

@/Q 020
20

84y
8 yg

Intuitive solution to finding strongly connected components.

W

058
(112

C
pollEv.com/jhug text to 37607
Q: Which DFS call should come next?
A. DFS(7) [397963]
B. DFS(6) or DFS(8) [398061]

C. DFS(9), DFS(10), DFS(11), or DFS(12) [398062]

Intuitive solution to finding strongly connected components.

Example
Run DFS(1), get the SCC: {1}.
Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC.
Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}.

C%? p}f A

Punchline. A Magic Sequence of DFS calls yields SCC (MSDFSSCC)

Intuitive solution to finding strongly connected components.

DFS. Calling DFS wantonly is a problem. Never want to leave your SCC.

Starting SCCs. There’s always some set of SCCs with outdegree O, e.g. {1}.
Calling DFS on any node in these SCCs finds the SCC.

DFS Order. After calling DFS on all starting SCCs, there’s at least one SCC
that only points at the starting SCCs.

0 first vertex is a sink

e e (has no edges pointing from it)

A SR

B

digraph G and its strong components Treat SCCs as one big node. Kernel DAG.
Arrows only connect SCCs. Graph is acyclic.

64

Kosaraju-Sharir algorithm: intuitive example

Kernel DAG. Topological sort of kernelIDAG(G) is A, B, C, D, E.

MSDFSSCC. Call DFS on element from E, D, C, B, A. Valid MSDFSSCC.
For example, DFS(1), DFS(2), DFS(9), DFS(6), DFS(7).

Summary.
« The MSDFSSCC is given by reverse of the topological sort of kernelDAG(G).

first vertex is a sink
(has no edges pointing from it)

digraph G and its strong components kernel DAG of G. Topological order: A, B, C, D, E.
65

Kosaraju-Sharir algorithm: intuition (general)

7?7

Kernel DAG. MSDFSSCC is given by freverse of topological sort of kernelDAG(G).

Reverse Graph Lemma. Reverse of topological sort of kernalDAG(G) is given by

reverse postorder of G* (see book), where G® is G with all arrows flipped around.

Punchline.
« MSDFSSCC: The reverse postorder of G~.

first vertex is a sink
(has no edges pointing from it)

digraph G and its strong components kernel DAG of G (in reverse topological order)
66

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-.
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

digraph G

67

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-.
1 02 453 11 9 12 10 6 7 8

reverse digraph GR

68

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G-.

id(]

<

- O
O—l

O 00 N O ui A~ W N

done 11

N N N NN W Bh~ W

69

Kosaraju-Sharir algorithm: intuition

digraph G

first vertex is a sink
(has no edges pomtzngfrom it)

QIR

B A
o
C
QS@
() (12)

reverse digraph GR

E D C
1 02 45 3 11 9 12 10

kernel DAG of G (in reverse topological order)

B A
6 7

8

70

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
 Phase 1: run DFS on G® to compute reverse postorder.
* Phase 2: run DFS on G, considering vertices in order given by first DFS.

NoeSyl

DFS in reverse digraph Gf

ONSOR0
DAY

gz;@

check unmarked vertices in the order
01234567389 1011 12

e 0202040

reverse postorder for use in second dfs ()

10245311912 10¢6 7 8

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

71

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
 Phase 1: run DFS on G® to compute reverse postorder.

* Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

check unmarked vertices in the order
102453119 12 106 7 8

idarray

dfs(1)
1 done

dfs(0)

dfs(5)
dfs(4)
dfs(3)
check 5
dfs(2)
check 0
check 3
2 done
3 done
check 2
4 done
5 done
check 1

0 done

dfs(11)
check 4
dfs(12)
dfs(9)
check 11
dfs(10)
check 12

10 done
9 done
12 done
11 done

dfs(6)
check 9
check 4
dfs(8)

check 6

8 done
check 0

6 done

dfs(7)
check 6
check 9
7 done

72

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of
a digraph in time proportional to E + V.

Pf.
* Running time: bottleneck is running DFS twice (and computing GR).
« Correctness: tricky, see textbook (2"d printing).
* Implementation: easy!

73

Connected components in an undirected graph (with DFS)

public class CC

{
private boolean marked[];
private int[] 1id;
private int count;

pubTlic CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.VQ];

for (int v =0; v < G.VO; v++)
{
if (!marked[v])
{
dfs(G, v);
count++;
ks
ks
3

private void dfs(Graph G, int v)
{

marked[v] = true;

id[v] = count;

for (Cint w : G.adj(v))

if (!marked[w])
dfs(G, w);

}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }
}

Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC
{
private boolean marked[];
private int[] id;
private int count;

public KosarajuSharirSCC(Digraph G)

{
marked = new boolean[G.V()];
id = new int[G.VQ];
DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
for (int v : dfs.reversePost())
{
if (Imarked[v])
{
dfs(G, v);
count++;
}
}
}
private void dfs(Digraph G, int v)
{
marked[v] = true;
id[v] = count;
for (Cint w : G.adj(v))
if (Imarked[w])
dfs(G, w);
}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
}

75

Digraph-processing summary: algorithms of the day

single-source
reachability DFS
in a digraph

topological sort
in a DAG

DFS

strong (%\@*

(2) Kosaraju-Sharir
components (10) _
ON DFS (twice)

in a digraph

