
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

‣ Fundamentals and flipped lectures

‣ Priority queues and heaps

‣ Heapsort

‣ Deeper thinking

Pro tip: Sit somewhere where you can work in a group of 2 or 3

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ Fundamentals and flipped lectures

‣ Priority queues and heaps

‣ Heapsort

‣ Deeper thinking

2.4 PRIORITY QUEUES

3

Priority queue

Did you watch the prerecorded video?

A. Yes, and I feel prepared. [675996]
B. Yes, but I don’t think I learned much. [675997]
C. No, but I feel prepared. [675998]
D. No. Also who is that guy? [675999]

pollEv.com/jhug text to 37607

4

Heaps (Fall 2006 midterm)

Q: Which array corresponds to the heap above?

A. [- X W V S P U Q R J D C H...] [634711]
B. [- X S V P W Q U R C D J H...] [666062]
C. [- X W J V U D H S P Q R C...] [666063]

pollEv.com/jhug text to 37607

5

Heaps (Fall 2006 midterm)

Q: If you insert the letter M into the heap, which array entries change?

A. 3, 6, 7, 12, 13 [668486] D. 6, 13 [668489]
B. 3, 6, 13 [668487] E. 3, 6, 12, 13 [668490]
C. 1, 2, 4, 5, 8, 9, 10, 11, 13 [668488]

pollEv.com/jhug text to 37607

 0 1 2 3 4 5 6 7 8 9 10 11 12
[- X W J V U D H S P Q R C ...

6

Heaps (Fall 2006 midterm)

Q: If you insert the letter M into the heap, which array entries change?

B. 3, 6, 13

pollEv.com/jhug text to 37607

 0 1 2 3 4 5 6 7 8 9 10 11 12 13
[- X W M V U J H S P Q R C D ...

7

Heaps (Fall 2006 midterm)

Q: If you delete the max from the original heap, which entries change?

A. 1, 3, 6, 12 [668502] D. 1, 3, 12 [668505]
B. 1, 3, 7, 12 [668503] E. 1, 3, 6, 7, 12 [668506]
C. 1, 2, 4, 8, 12 [668504]

pollEv.com/jhug text to 37607

 0 1 2 3 4 5 6 7 8 9 10 11 12
[- X W J V U D H S P Q R C ...

8

Heaps (Fall 2006 midterm)

Q: If you delete the max from the original heap, which entries change?

C. 1, 2, 4, 8, 12 [668504]

pollEv.com/jhug text to 37607

 0 1 2 3 4 5 6 7 8 9 10 11
[- W V J S U D H C P Q R ...

Flipped learning

Metacognition

・Thinking about how you think!

・Blackboard and PollEverywhere questions test only basic

comprehension.

9

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ Fundamentals and flipped lectures

‣ Priority queues and heaps

‣ Heapsort

‣ Deeper thinking

2.4 PRIORITY QUEUES

Heaps (slightly harder)

11

Q: Given a binary max heap with integer keys 1, ..., N of height

h=floor(lg N), what positions are valid for the key 2?

A. 1, ..., N-2 [668544]
B. h, ..., N [688545]
C. floor(N/2), ..., N [688546]
D. ceil(N/2), ..., N [688547]

pollEv.com/jhug text to 37607

Q: Given a heap with N elements, how many valid orderings are there?

Heaps (slightly harder)

12

Q: Given a binary max heap with integer keys 1, ..., N of height

h=floor(lg N), what positions are valid for the key 2?

D. ceil(N/2), ..., N [688547]

pollEv.com/jhug text to 37607

One approach: How many children could 2 possibly have?

5

10

2 2 2

2 2 28 9

4 76

32

1

N=10: Position 5 or higher

Heaps (slightly harder)

13

Q: Given a binary max heap with integer keys 1, ..., N of height

h=floor(lg N), what positions are valid for the key 2?

D. ceil(N/2), ..., N [688547]

pollEv.com/jhug text to 37607

5

10

2 2

2 2 28 9

4 76

32

1

2 11
N=10: Position 5 or higher

N=11: Position 6 or higher

One approach: How many children could 2 possibly have?

Heaps

14

Q: Given a heap with N elements, how many valid orderings are there?

A.

http://tpreclik.dyndns.org/codeblog/?p=4

http://oeis.org/search?q=1%2C1%2C2%2C3%2C8%2C20%2C80%2C210&language=english&go=Search

Seeing the forest from the heap

Work in groups of 2 or 3 (no more!).

・1. What is the difference between a priority queue and a heap?

・2. Give a specific example (real world or fantastical) of a situation

where a heap would not be the best way to implement a priority queue.

How would you implement the PQ?

・3. What tasks utilize the sink method?

・4. What tasks utilize the swim method?

・5. How would you implement a MaxPQ that also has a constant time

min() method?

・6. Bonus question: If you used stacks instead of a heap, what is the

minimum number of stacks you’d need to implement a priority queue?

What are the run times of your methods? Would having more stacks

improve run time?

In 5 minutes we will ‘debrief’.

15

Debriefing

16

What is the difference between a priority queue and a heap?

・A heap as an efficient implementation of a priority queue.

・Priority queue is an abstract data type

・Heap is a data structure

Debriefing

17

Give a specific example (real world or fantastical) of a situation where a

heap would not be the best way to implement a priority queue?

・a. 3 way sort (or more generally to support a different PQ-sort)

・b. List of items is known to be provided in sorted order

– Fantastical!

・c. Only two distinct key values (more generally, only k distinct keys)

・d. When you’re worried about cache performnace

・e. If you want to track only say top 10 elements

– But still ok to use heap (though an array is just fine for N=10)

・Find average item (median)

– Heap is still the way to go (see end of slides)

・If you want to use a PQ for sorting AND want stability

・Canned answer we had in mind #1: If almost everything was insert, and

almost never ask for the max: Maintained PQ as unsorted array

・Canned answer #2r: If almost every operation was get max, very few

inserts: Maintain as sorted array the whole time

Debriefing

18

What tasks utilize the sink method?

・deleteMax

– Heapsort

・If you change a key value (not allowed by our API, but if keys mutable)

・Top down heapification (swimming every item starting from the

leftmost item -- bad! N lg N!)

What tasks utilize the swim method?

・Inserting an element

・Heapification (bottom up heap construction) (sinking every item

starting from the right most item -- good! N)

Debriefing

19

How would you implement a MaxPQ that also has a constant time min()

method?

・One way: maintain total order at all times (slower insert, but constant

min() as required by problem)

・To maintain logarithmic insert(), keep an instance variable that tracks

min

– When you delete or insert - have to make sure min is correct

– Follow up question after class: How do you actually do that?

– insert(): Check and see if the insert item is less than the stored

minimum. If so, replace it.

– delete():Exercise for the reader (hint: it’s trivially easy!)

Debriefing

If you used stacks instead of a heap, what is the minimum number of

stacks you’d need to implement a priority queue?

・2 stacks

– Insert: Add to one of your stacks

– deleteMax: pop everything off, and track the biggest thing you see --

push to the other stack as you go (find the diamond in stack of

pancakes)

What are the run times of your methods?

・delete: linear

・insert: constant

Would having more stacks improve run time?

・Even more griddles

・API - can only see one pancake at a time

・Arvind’s crazy bonus answer: N stacks, put in heap (but we said stacks

instead of a heap so Arvind is breaking the rules)

20

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ Fundamentals and flipped lectures

‣ Priority queues and heaps

‣ Heapsort

‣ Deeper thinking

2.4 PRIORITY QUEUES

Big picture mini-lecture

Heapsort

・Given PQ, you can trivially sort N items: Insert them all, then delete them.

・With a max heap, you can sort in place!

Basic Idea

・Given arbitrary array (i.e. not a heap):

・Max-heapify the array (using sink and/or swim).

・Delete max items one by one (thus moving max to end of array).

・Items take a round trip (but across a logarithmic space).

Modern Heapsort

・Invented by Bob “W.” Floyd (was best buddies with Donald Knuth).

22

Donald Knuth - The Art of Computer Programming Volume 3

Heap construction. Build max heap (using bottom-up method).

Heapsort demo

S O R T E X A M P L E

1 2 3 4 5 6 7 8 9 10 11

5

10 11

R

E X AT

M P L E

O

S

8 9

4 76

32

1

we assume array entries are indexed 1 to N

array in arbitrary order

Heap construction. Build max heap (using bottom-up method).

Heapsort demo

R

E

X

A

T

M

P L

EO

S

X T S P L R A M O E E

11-node heapend of construction phase

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

T

M

P L

O

S

E T S P L R A M O E X

1

1

11

11

X

E

exchange 1 and 11

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

T

M

P

L

E

O

S

T P S O L R A M E E X

1

1

2

2

4

4

9

9

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

end of sortdown phase

Heap Construction

Quicksort

・Partition once on every item (pivot)

– Choice 1: How do you select order of pivots?

– Choice 2: What partitioning algorithm will you use?

Heap Construction (Heapification)

・Sink or swim items in array

– Choice 1: How do you select order of items?

– Choice 2: How do you decide when to swim or sink?

Bottom-up Heapification

・Choice 1: Always rightmost element

・Choice 2: Always swim

・Fewer than 2N compares and N exchanges!

28

S O R T E X A M P L E

1 2 3 4 5 6 7 8 9 10 11

Heap construction. Build max heap using bottom-up method.

Heapsort demo

1-node heaps

S O R T E X A M P L E

R

E X AT

M P L E

O

S

8 9 10 11

10 118 9

6 7

76

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 5

5

S O R T E X A M P L E

5

R

E X AT

M P L E

O

S

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 5

5

10

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

5 10

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 5

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 4

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

4

4

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 4

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 3

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3

3

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 3

R

E

X

AT

M P

L

E

O

S

S O X T L R A M P E E

3 6

6

3

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 3

R

E

X

AT

M P

L

E

O

S

S O X T L A A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 2

R

E

X

AT

M P

L

E

O

S

S O X T L R A M P E E

2

2

Heap construction. Build max heap using bottom-up method.

Heapsort demo

R

E

X

A

T

M P

L

E

O

S

S T X O L R A M P E E

4

2

2 4

sink 2

Heap construction. Build max heap using bottom-up method.

Heapsort demo

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

9

4

2

2 4 9

sink 2

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 2

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

7-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 1

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

1

1

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 1

R

E

X

A

T

M

P L

EO

S

X T S P L R A M O E E

1 3

3

1

Heap construction. Build max heap using bottom-up method.

Heapsort demo

R

E

X

A

T

M

P L

EO

S

X T S P L R A M O E E

11-node heapend of construction phase

Sink-based (bottom up) heapification

Observation

・Given two heaps of height 1.

・A heap of height 2 results by:

– Pointing the root of each heap at a new item.

– Sinking that new item.

・Cost: 4 compares (2 * height of new tree).

Q: How many compares are needed to sink the O into the correct position

in the worst case?

A. 1 [676050]
B. 2 [676051]
C. 3 [676052]
D. 4 [676053] E

T

M P

L

E

O

h = 1

pollEv.com/jhug text to 37607

46

7-node heap

7-node heap

Q: How many worst-case compares are needed to form a height 3 heap by

sinking an item into one of two perfectly balanced heaps of height 2?

A. 4 [676057]
B. 6 [676058]
C. 8 [676059]

pollEv.com/jhug text to 37607

Sink-based (bottom up) heapification

Observation

・Given two heaps of height h-1.

・A heap of height h results by

– Pointing the root of each heap at a new item.

– Sinking that new item.

・Cost to sink: At most 2h compares.

・Total heap construction cost: 4*2 + 2*4 + 6 = 22 compares

00000000

2222

44

6

0000

22

4

00

2

Sink-based (bottom up) heapification

Total Heap Construction Cost

・For h=1: C1 = 2

・For h=2: C2 = 2C1 + 2*2

・For h: Ch = 2Ch-1 + 2h

・Total cost: Doubles with h (plus a small constant factor): Exponential in h

・Total cost: Linear in N

00

2

4

6

Heapsort

Order of growth of running time

・Heap construction: N

・N calls to delete max: N lg N

Total Extra Space

・Constant (in-place)

00000000

2222

44

6

Heapsort summary

The good news:

・Heap sort: In place and theoretically fast (not in place)

The bad news:

・(Almost) nobody uses Heapsort in the real world. Why?

– Like Miss Manners, Heapsort is very well-behaved, but is unable to

handle the stresses of the real world

– In particular, performance on real computers is heavily impacted by

really messy factors like cache performance

50

Mergesort Quicksort Heapsort

What does your computer look like inside?

51

Play with it!

52

Levels of caches

We’ll assume there’s just one cache, to keep things simple

That’s bad enough...

53

Key idea behind caching

When fetching one memory address, fetch everything nearby

Because memory access patterns of most programs/algorithms

are highly localized!

54

Which of these is faster?

A. sum=0
 for (i = 0 to size)
 for (j = 0 to size)
 sum += array[i][j]

B. sum=0
 for (i = 0 to size)
 for (j = 0 to size)
 sum += array[j][i]

55

Answer: A is faster, sometimes by an order of magnitude or more.

Cache and memory latencies: an analogy

Cache

Get up and get something

from the kitchen

RAM

Walk down the block to

borrow from neighbor

Hard drive

Drive around the world...

...twice

56

Sort algorithms and cache performance

Mergesort: sort subarrays first

Quicksort: partition into subarrays

Heapsort: all over the place

57

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ Fundamentals and flipped lectures

‣ Priority queues and heaps

‣ Heapsort

‣ Deeper thinking

2.4 PRIORITY QUEUES

Another real world issue

Work in groups of 3.

・What is the primary implementation issue that would affect the real

world usability of the MaxPQ class?

・Give two distinct solutions for handling this issue in plain English.

– What is the WORST case run time of each solution?

– What is the AMORTIZED run time of each solution?

59

 private class MaxPQ<Key extends<Comparable<Key>> {
 public MaxPQ(int maxN)
 public boolean isEmpty()
 public int size()
 public void insert(Key v)
 public key delMax()

 }

Debriefing.

60

What is the primary real world issue that would affect the real world

usability of the MaxPQ class?

・Size is fixed!!

Another real world issue

Give two distinct solutions for handling this issue in plain English.

・Resizing array

・Triply linked list: Each node has a parent and two chidren

What is the WORST case run time of each solution?

・Insert for resizing array: Linear [copy the whole array]

・Insert for Triple: Logarithmic

What is the AMORTIZED run time of each solution?

・Insert (amortized): AMORTIZED LG!!

・Insert (amortized TLL): Logarithmic [no amortization about it]

61

Sort Identification

62

A1. Insertion Sort

A2. Shellsort

 (13-4-1 increments)

B1. Mergesort

 (top down)

B2. Mergesort

 (bottom up)

C1. Quicksort

 (standard)

C2. Quicksort

 (3 way)

D1. Heapsort

E1. Selection sort

Sort Identification - midterm fall 2010 problem 2 or so website

63

A1. Insertion Sort

A2. Shellsort

 (13-4-1 increments)

B1. Mergesort

 (top down)

B2. Mergesort

 (bottom up)

C1. Quicksort

 (standard)

C2. Quicksort

 (3 way)

D1. Heapsort

E1. Selection sort

Example: Insertion sort. All items (except maybe one) sorted below row X, then

all items after row X are in original order. Located in column 5.

Sort Identification

64

A1. Insertion Sort

A2. Shellsort

 (13-4-1 increments)

B1. Mergesort

 (top down)

B2. Mergesort

 (bottom up)

C1. Quicksort

 (standard)

C2. Quicksort

 (3 way)

D1. Heapsort

E1. Selection sort

Task: Form a group of 3. Everyone identify at LEAST one sort alone. Write out a

rule identifying your sort(s). Don’t share yet.

A foray into crowd sourcing

Go to the web address: www.reddit.com/r/226

・Create an account (if you don’t have one) - takes 30 seconds (no email

verification!)

・Post your sort identification heuristics.

・Upvote your favorites.

・Downvote your least favorites (or incorrect ones).

This has (almost certainly) never been tried.

・Hopefully it works!

65

Implementing new abstract data types

Randomized Priority Queue.

・Describe how you would implement the sample() and delRandom()

methods in the following class.

・In Groups:

– Design a sample() and delRandom() method.

・Between groups:

– Compare and critique designs.

66

 private class MinPQ<Key extends<Comparable<Key>> {
 public MinPQ()
 public void insert(Key key)
 Key min()
 Key delMin()
 Key sample() // return random item, constant time
 Key delRandom() // del random item, logarithmic time

 }

Repurposing existing data structures

Work in groups of 3.

・Consider the class below which tracks the median of inserted items.

・Solo (1 minute):

・ How would you trivially implement each method if given linear time

for each operation?

・ In constant for insertItem(), but average linear for the other two

operations?

・Group (5 minutes): Compare solo answers. Devise an algorithm for

solving the problem.

・ Hint: How would you track the 2nd largest?

・Between groups: Compare solutions.
67

public class MedianTracker {
 public void MedianTracker()
 public void insertItem(int a) // log N time
 public int median() // constant time
 public int removeMedian() // log N time
}

The order of the day

Summary

・The priority queue is a very powerful abstract datatype

– Can process items in order without storing in sorted order (and

without even storing everything at once! [online algorithms])

– Can be used as a sorting algorithm

・The heap is the best data structure for almost any PQ

– Heap-based PQ leads to heapsort

・Heapsort

– Theoretically important: Optimal bounds, in-place, but non-stable

– Infrequently used in practice (particularly due to caching)

・Real world heaps

– Resizing array: Amortized logarithmic time

– Linked list: Prevents sampling, uses more memory

・Reddit sorting experiment

– Patterns invoked by various sorts

・Randomized PQ

68

