
1

1

Optimizing Dynamic Memory
Management!

2

Goals of this Lecture!
• Help you learn about:"

•  Details of K&R heap mgr"
•  Heap mgr optimizations related to Assignment #6"

•  Faster free() via doubly-linked list, redundant sizes,
and status bits"

•  Faster malloc() via binning"
•  Other heap mgr optimizations"

•  Best/good fit block selection"
•  Selective splitting"
•  Deferred coalescing"
•  Segregated data"
•  Segregated meta-data"
•  Memory mapping"

2

3

Part 1:"

Details of the K&R Heap Manager"

4

An Implementation Challenge!
Problem:"
• Need information about each free block"

•  Starting address of the block of memory"
•  Length of the free block"
•  Pointer to the next block in the free list"

• Where should this information be stored?"
•  Number of free blocks is not known in advance"
•  So, need to store the information on the heap!

• But, wait, this code is what manages the heap!!!"
•  Can’t call malloc() to allocate storage for this

information"
•  Can’t call free() to deallocate the storage, either"

3

5

Store Information in the Free Block!
"
Solution:"
• Store the information directly in the block"

•  Since the memory isn’t being used for anything anyway"
•  And allows data structure to grow and shrink as needed"

6

Block Headers!
•  Every free block has a header, containing:"

•  Pointer to (i.e., address of) the next free block"
•  Size of the free block"

•  Challenge: programming outside the type system"

size user data

p (address returned to the user) header

4

7

Free List: Circular Linked List!
• Free blocks, linked together"

•  Example: circular linked list"

• Keep list in order of increasing addresses"
•  Makes it easier to coalesce adjacent free blocks"

In
use

In
use

In
use

Free list

8

Malloc: First-Fit Algorithm!
• Start at the beginning of the list"
• Sequence through the list"

•  Keep a pointer to the previous element"

• Stop when reaching first block that is big enough"
•  Patch up the list"
•  Return a pointer to the user"

p p prev p prev

5

9

Malloc: First Case: Perfect Fit!
• Suppose the first fit is a perfect fit"

•  Remove the block from the list"
•  Link the previous free block with the next free block"
•  Return the current to the user (skipping header)"

p prev
p+1

10

Malloc: Second Case: Big Block!
• Suppose the block is bigger than requested"

•  Divide the free block into two blocks"
•  Keep first (now smaller) block in the free list"
•  Allocate the second block to the user"
•  Bonus: No need to manipulate links"

p p

6

11

Free!
• User passes a pointer to the memory block "
• void free(void *ap);

• free() function inserts block into the list"
•  Identify the start of entry "
•  Find the location in the free list"
•  Add to the list, coalescing entries, if needed"

ap bp

12

Free: Finding Location to Insert!
•  Start at the beginning!
•  Sequence through the list!

•  Stop at last entry before the to-be-freed element"

In
use

FREE
ME

In
use

Free list
bp p

7

13

Free: Handling Corner Cases!
• Check for wrap-around in memory"

•  To-be-freed block is before first entry in the free list, or"
•  To-be-freed block is after the last entry in the free list"

In
use

FREE
ME

In
use

Free list
bp p

14

Free: Inserting Into Free List!
• New element to add to free list
•  Insert in between previous and next entries
• But, there may be opportunities to coalesce"

bp

p p->s.ptr

8

15

Coalescing With Neighbors!
• Scanning the list finds the location for inserting"

•  Pointer to to-be-freed element: bp
•  Pointer to previous element in free list: p

• Coalescing into larger free blocks"
•  Check if contiguous to upper and lower neighbors"

In
use

FREE
ME

In
use

Free list
bp p

lower upper

16

Coalesce With Upper Neighbor!
• Check if next part of memory is in the free list"
•  If so, make into one bigger block
• Else, simply point to the next free element

bp

upper

p p->s.ptr

p p->s.ptr

9

17

Coalesce With Lower Neighbor!
• Check if previous part of memory is in the free list"
•  If so, make into one bigger block

bp p

lower

p->s.ptr

p p->s.ptr

18

Strengths of K&R Approach!
•  Advantages"

•  Simplicity of the code"
•  Optimizations to malloc()

•  Splitting large free block to
avoid wasting space"

•  Optimization to free()
•  Roving free-list pointer is

left at the last place a block
was allocated"

•  Coalescing contiguous free
blocks to reduce
fragmentation"

p

bp

upper

p p->s.ptr

10

19

Weaknesses of K&R Approach!
•  Inefficient use of memory: fragmentation"

•  First-fit policy can leave lots of “holes” of free blocks in memory"

•  Long execution times: linear-time overhead"
• malloc() scans the free list to find a big-enough block"
• free() scans the free list to find where to insert a block"

•  Accessing a wide range of memory addresses in free list"
•  Can lead to large amount of paging to/from the disk"

In
use

In
use

In
use

Free list

20 8 50

20

"
"

"

Part 2:"

Optimizations Related to Assignment 6"

11

21

Faster Free!
• Performance problems with K&R free()

•  Scanning the free list to know where to insert"
•  Keeping track of the “previous” node to do the insertion"

• Doubly-linked, non-circular list "
•  Header"

•  Size of the block (in # of units)"
•  Flag indicating whether the block is free or in use"
•  If free, a pointer to the next free block"

•  Footer"
•  Size of the block (in # of units)"
•  If free, a pointer to the previous free block"

h
e
a
d

f
o
o
t

22

Size: Finding Next Block!
• Go quickly to next block in memory"

•  Start with the user’s data portion of the block"
•  Go backwards to the head of the block"

•  Easy, since you know the size of the header"
•  Go forward to the head of the next block"

•  Easy, since you know the size of the current block"

12

23

Size: Finding Previous Block!
• Go quickly to previous chunk in memory"

•  Start with the user’s data portion of the block"
•  Go backwards to the head of the block"

•  Easy, since you know the size of the header"
•  Go backwards to the footer of the previous block"

•  Easy, since you know the size of the footer"
•  Go backwards to the header of the previous block"

•  Easy, since you know the size from the footer"

24

Pointers: Next Free Block!
• Go quickly to next free block in memory"

•  Start with the user’s data portion of the block"
•  Go backwards to the head of the block"

•  Easy, since you know the size of the header"
•  Go forwards to the next free block"

•  Easy, since you have the next free pointer"

13

25

Pointers: Previous Free Block!
• Go quickly to previous free block in memory"

•  Start with the user’s data portion of the block"
•  Go backwards to the head of the block"

•  Easy, since you know the size of the header"
•  Go forwards to the footer of the block"

•  Easy, since you know the block size from the header"
•  Go backwards to the previous free block"

•  Easy, since you have the previous free pointer"

26

Efficient Free !
• Before: K&R"

•  Scan the free list till you find the place to insert"
•  Needed to see if you can coalesce adjacent blocks"

•  Expensive for loop with several pointer comparisons"

• After: with header/footer and doubly-linked list"
•  Coalescing with the previous block in memory"

•  Check if previous block in memory is also free"
•  If so, coalesce"

•  Coalescing with the next block in memory the same way"
•  Add the new, larger block to the front of the linked list"

14

27

But Malloc is Still Slow…!
• Still need to scan the free list"

•  To find the first, or best, block that fits"

• Root of the problem"
•  Free blocks have a wide range of sizes"

• Solution: binning"
•  Separate free lists by block size"
•  Implemented as an array of free-list pointers"

28

Binning Strategies: Exact Fit!
• Have a bin for each block size, up to a limit"

•  Advantages: no search for requests up to that size"
•  Disadvantages: many bins, each storing a pointer"

• Except for a final bin for all larger free blocks"
•  For allocating larger amounts of memory"
•  For splitting to create smaller blocks, when needed"

1
2
3
4

> 4

1 1 1

3 3

5 8

15

29

Binning Strategies: Range!
• Have a bin cover a range of sizes, up to a limit"

•  Advantages: fewer bins"
•  Disadvantages: need to search for a big enough block"

• Except for a final bin for all larger free chunks"
•  For allocating larger amounts of memory"
•  For splitting to create smaller blocks, when needed"

1-2
3-4
5-6
7-8
> 8

1 2 1

6 5

10 14

30

Suggestions for Assignment #6!
•  Debugging memory management code is hard"

•  A bug in your code might stomp on the headers or footers"
•  … making it very hard to understand where you are in memory"

•  Suggestion: debug carefully as you go along"
•  Write little bits of code at a time, and test as you go"
•  Use assertion checks very liberally to catch mistakes early"
•  Use functions to apply higher-level checks on your list"

•  E.g., all free-list blocks are marked as free"
•  E.g., each block pointer is within the heap range"
•  E.g., the block size in header and footer are the same"

•  Suggestion: draw lots and lots of pictures"

16

31

"
"

"

Part 3:"

Other Optimizations"

32

Best/Good Fit Block Selection!
•  Observation:"

•  K&R uses “first fit” (really, “next fit”) strategy"
•  Example: malloc(8) would choose the 20-byte block"

•  Alternative: “best fit” or “good fit” strategy"
•  Example: malloc(8) would choose the 8-byte block"
•  Applicable if not binning, or if a bin has blocks of variable sizes"
•  Pro: Minimizes internal fragmentation and splitting"
•  Con: Increases cost of choosing free block"

In
use

In
use

In
use

Free list

20 8 50

17

33

Selective Splitting!
•  Observation:"

•  K&R malloc() splits whenever chosen block is too big"
•  Example: malloc(14) splits the 20-byte block"

•  Alternative: selective splitting!
•  Split only when the saving is big enough"
•  Example: malloc(14) allocates the entire 20-byte block"
•  Pro: Reduces external fragmentation"
•  Con: Increases internal fragmentation"

In
use

In
use

In
use

Free list

8 50 20

34

Deferred Coalescing!
•  Observation:"

•  K&R does coalescing in free() whenever possible"

•  Alternative: deferred coalescing!
•  Wait, and coalesce many blocks at a later time"
•  Pro: Handles “malloc(x);free();malloc(x)” sequences well"
•  Con: Complicates algorithms"

In
use

FREE
ME

In
use

Free list
bp p

lower upper

18

35

Segregated Data!
•  Observation:"

•  Splitting and coalescing consume lots of overhead"

•  Problem:"
•  How to eliminate that overhead?"

•  Solution: Segregated data"
•  Make use of the virtual memory concept…!
•  Store each bin’s blocks in a distinct (segregated) virtual memory

page"
•  Elaboration…"

36

Segregated Data (cont.)!
•  Segregated data"

•  Each bin contains blocks of fixed sizes"
•  E.g. 32, 64, 128, …"

•  All blocks within a bin are from same virtual memory page"
•  Malloc never splits! Examples:"

•  Malloc for 32 bytes => provide 32"
•  Malloc for 5 bytes => provide 32"
•  Malloc for 100 bytes => provide 128"

•  Free never coalesces!"
•  Free block => examine address, infer virtual memory page, infer

bin, insert into that bin"
•  Pro: Completely eliminates splitting and coalescing overhead"
•  Pro: Eliminates most meta-data; only forward links are required (no

backward links, sizes, status bits, footers)"
•  Con: Some usage patterns cause excessive external fragmentation"

19

37

Segregated Meta-Data!
•  Observations:"

•  Meta-data (block sizes, status flags, links, etc.) are scattered across
the heap, interspersed with user data"

•  Heap mgr often must traverse meta-data"

•  Problem 1:"
•  User error easily can corrupt meta-data"

•  Problem 2:"
•  Frequent traversal of meta-data can cause excessive page faults"

•  Solution: Segregated meta-data!
•  Make use of the virtual memory concept…!
•  Store meta-data in a distinct (segregated) virtual memory page from

user data"

38

Memory Mapping!
•  Observations:"

•  Heap mgr might want to release heap memory to OS (e.g. for use as
stack)"

•  Heap mgr can call brk(currentBreak–x) to release freed
memory to OS, but…"

•  Difficult to know when memory at high end of heap is free, and…"
•  Often freed memory is not at high end of heap!"

•  Problem:"
•  How can heap mgr effectively release freed memory to OS?"

•  Solution: Memory mapping!
•  Make use of virtual memory concept…!
•  Allocate memory via mmap() system call"
•  Free memory via munmap() system call"

20

39

mmap() and munmap()
•  Typical call of mmap()

p = mmap(NULL, size, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANON, 0, 0);"
•  Asks the OS to map a new private read/write area of virtual memory

containing size bytes"
•  Returns the virtual address of the new area on success, NULL on

failure"

•  Typical call of munmap()
status = munmap(p, size);"
•  Unmaps the area of virtual memory at virtual address p consisting of
size bytes"

•  Returns 1 on success, 0 on failure"

•  See Bryant & O’Hallaron book and man pages for details"

40

Using mmap() and munmap()
Typical strategy:"

•  Allocate small block =>"
•  Call brk() if necessary"
•  Manipulate data structures described earlier in this lecture"

•  Free small block =>"
•  Manipulate data structures described earlier in this lecture"
•  Do not call brk()

•  Allocate large block =>"
•  Call mmap()

•  Free large block =>"
•  Call munmap()

21

41

Summary!
• Details of K&R heap manager"
• Heap mgr optimizations related to Assignment #6"

•  Faster free() via doubly-linked list, redundant sizes,
and status bits"

•  Faster malloc() via binning"

• Other heap mgr optimizations"
•  Best/good fit block selection"
•  Selective splitting"
•  Deferred coalescing"
•  Segregated data"
•  Segregated meta-data"
•  Memory mapping"

