
1

1

Assemblers and Linkers!

2

Goals for this Lecture!

• Help you to learn about:"
•  IA-32 machine language"
• The assembly and linking processes"

2

3

Why Learn Machine Language!
• Machine language is the last stop on the “language

levels” tour"
• A power programmer knows about the relationship

between assembly language and machine
language"

• A systems programmer knows how an assembler
translates assembly language to machine
language"

4

Part 1: Machine Language"

3

5

IA-32 Machine Language!
•  IA-32 machine language"

•  Difficult to generalize about IA-32 instruction format"
•  Many (most!) instructions are exceptions to the rules"

•  Generally, instructions use the following format shown in
following slides"

• We’ll go over"
•  The format of instructions"
•  Two example instructions"

• Just to give a sense of how it works…"

6

IA-32 Instruction Format!
Instruction

prefixes Opcode ModR/M SIB Displacement Immediate

Up to 4
prefixes of
1 byte each
(optional)

1, 2, or 3 byte
opcode

1 byte
(if required)

1 byte
(if required)

0, 1, 2,
or 4 bytes

0, 1, 2,
or 4 bytes

Mod Reg/
Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Instruction prefix"
•  Sometimes a repeat count"
•  Rarely used; don’t be concerned"

4

7

IA-32 Instruction Format (cont.)!
Instruction

prefixes Opcode ModR/M SIB Displacement Immediate

Up to 4
prefixes of
1 byte each
(optional)

1, 2, or 3 byte
opcode

1 byte
(if required)

1 byte
(if required)

0, 1, 2,
or 4 bytes

0, 1, 2,
or 4 bytes

Mod Reg/
Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Opcode"
•  Specifies which operation should be performed"
•  Add, move, call, etc."

8

IA-32 Instruction Format (cont.)!
Instruction

prefixes Opcode ModR/M SIB Displacement Immediate

Up to 4
prefixes of
1 byte each
(optional)

1, 2, or 3 byte
opcode

1 byte
(if required)

1 byte
(if required)

0, 1, 2,
or 4 bytes

0, 1, 2,
or 4 bytes

Mod Reg/
Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

ModR/M"
•  Specifies types of operands (immediate, register, memory)"
•  Specifies sizes of operands (byte, word, long)"
•  Sometimes denotes a register: 

000 = EAX/AL; 011 = EBX/BL; 001 = ECX/CL; 010 = EDX/DL; 
110 = ESI/DH; 111 = EDI/BH; 101 = EBP/CH; 110 = ESP/AH "

•  Sometimes contains an extension of the opcode"

5

9

IA-32 Instruction Format (cont.)!
Instruction

prefixes Opcode ModR/M SIB Displacement Immediate

Up to 4
prefixes of
1 byte each
(optional)

1, 2, or 3 byte
opcode

1 byte
(if required)

1 byte
(if required)

0, 1, 2,
or 4 bytes

0, 1, 2,
or 4 bytes

Mod Reg/
Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

SIB"
•  Used when one of the operands is a memory operand  

that uses a scale, an index register, and/or a base register"

10

IA-32 Instruction Format (cont.)!
Instruction

prefixes Opcode ModR/M SIB Displacement Immediate

Up to 4
prefixes of
1 byte each
(optional)

1, 2, or 3 byte
opcode

1 byte
(if required)

1 byte
(if required)

0, 1, 2,
or 4 bytes

0, 1, 2,
or 4 bytes

Mod Reg/
Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Displacement"
•  Used in jump and call instructions"
•  Indicates the displacement between the destination instruction  

and the jump/call instruction"
•  More precisely, indicates: 

[addr of destination instr] – [addr of instr following the jump/call]"
•  Uses little-endian byte order"

6

11

IA-32 Instruction Format (cont.)!
Instruction

prefixes Opcode ModR/M SIB Displacement Immediate

Up to 4
prefixes of
1 byte each
(optional)

1, 2, or 3 byte
opcode

1 byte
(if required)

1 byte
(if required)

0, 1, 2,
or 4 bytes

0, 1, 2,
or 4 bytes

Mod Reg/
Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Immediate"
•  Specifies an immediate operand"
•  Uses little-endian byte order"

12

Example: Push on to Stack !
•  Assembly language: 

" "pushl %edx ""
•  Machine code:"

•  IA32 has a separate opcode for push for each register operand"
•  50: pushl %eax"
•  51: pushl %ecx"
•  52: pushl %edx"
•  …"

•  Results in a one-byte instruction"

•  Observe: sometimes one assembly language instruction
can map to a group of different opcodes"

0101 0010

7

13

Example: Load Effective Address!
•  Assembly language: 

" "leal (%eax,%eax,4), %eax ""
•  Machine code:"

•  Byte 1: 8D (opcode for “load effective address”)"

•  Byte 2: 04 (dest %eax, with scale-index-base)"

•  Byte 3: 80 (scale=4, index=%eax, base=%eax)"

1000 1101

0000 0100

1000 0000

Load the address %eax + 4 * %eax into register %eax

14

CISC and RISC!

•  IA-32 machine language instructions are complex!

•  IA-32 is a"
•  Complex Instruction Set Computer (CISC)!

•  Alternative:"
•  Reduced Instruction Set Computer (RISC)!

8

15

Characteristics of CISC and RISC!
•  CISC"

•  Many instructions"
•  Many addressing modes (direct, indirect, indexed, base-pointer)"
•  Hardware interpretation is complex!
•  Few instructions required to accomplish a given job (expressive)"
•  Example: IA-32"

•  RISC"
•  Few instructions (minimal interface)"
•  Few addressing modes (typically only direct and indirect)"
•  Hardware interpretation is simple!
•  Many instructions required to accomplish a given job (not

expressive)"
•  Examples: MIPS, SPARC, ARM"

16

Brief History of CISC and RISC!
•  Stage 1: Programmers write assembly language"

•  Important that assembly/machine language be expressive"
•  CISC dominates (esp. Intel)"

•  Stage 2: Programmers write high-level language"
•  Not important that assembly/machine language be expressive; the

compiler generates it"
•  Important that compilers work well => assembly/machine language

should be simple"
•  RISC takes a foothold (but CISC, esp. Intel, persists)"

•  Stage 3: Compilers get smarter"
•  Less important that assembly/machine language be simple"
•  RISC advantage in power consumption starts to matter"
•  CISC (esp. Intel) dominates the traditional computing world"
•  RISC (esp. ARM) dominates in battery-powered computing world"

9

17

Part 2: The Assembly Process"

18

The Build/Execute Process!

Compiler

Assembler

Linker

Execution

myprog.c

myprog.s

myprog

myprog.o
libraries

Covered in COS 320:"
Compiling Techniques"

Covered here"

10

19

Two Aspects of the Assembler/Linker!
•  Translating each instruction"

•  Mapping an assembly-language
instruction"

•  … into the corresponding
machine-language instruction"

•  Dealing with references
across instructions"
•  Jumps to other locations  

in same chunk of code"
•  Accesses a global variable by

the name of its memory location"
•  Calling to and returning from

functions defined in other code"

main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

20

References Across Instructions!
• Many instructions can be assembled independently"

•  pushl %edx"
•  leal (%eax, %eax, 4), %eax"
•  movl $0, %eax"
•  addl %ebx, %ecx"

• But, some make references to other data or code"
•  jne skip"
•  pushl $msg"
•  call printf"

• Need to fill in those references"
•  To generate a final executable binary"

11

21

The Forward Reference Problem!
•  Problem"

•  Assembler must generate machine language code for “jmp mylabel”"
•  But assembler hasn’t yet seen the definition of mylabel"

•  i.e., the jmp instruction contains a forward reference to mylabel"

 …
 jmp mylabel
 …
mylabel:
 …

Any assembler must"
deal with the "
forward reference"
problem"

22

The Forward Reference Solution!

•  Solution"
•  Assembler performs 2 passes over assembly language program"

•  Different assemblers perform different tasks in each pass"

•  One straightforward design…"

12

23

Assembler Passes!
•  Pass1"

•  Assembler traverses assembly program to create…"
•  Symbol table"

•  Key: label"
•  Value: information about label"

•  Label name, which section, what offset within that section, …"

•  Pass 2"
•  Assembler traverses assembly program again to create…"
•  RODATA section"
•  DATA section"
•  BSS section"
•  TEXT section"
•  Relocation record section"

•  Each relocation record indicates an area that the linker must
patch"

24

An Example Program!
•  A simple  

(nonsensical) 
program:"

•  Let’s consider how the  
assembler handles that 
program…"

 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

#include <stdio.h>
int main(void) {
 if (getchar() == 'A')
 printf("Hi\n");
 return 0;
}

13

25

Assembler Data Structures (1)!
•  Symbol Table"

•  Relocation Records"

•  RODATA Section (location counter: 0)"

•  TEXT Section (location counter: 0)"

Label! Section! Offset! Local?! Seq#!

Section! Offset! Rel Type! Seq#!

Offset! Contents! Explanation!

Offset! Contents! Explanation!

•  No DATA or BSS 
section in this program"

•  Initially all sections 
are empty"

26

Assembler Pass 1!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler adds binding  
to Symbol Table…"

Assembler notes that 
the current section is 
RODATA"

14

27

Assembler Data Structures (2)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 0)"
•  (Same)"

•  TEXT Section (location counter: 0)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"

•  msg marks a spot in the  
RODATA section at offset 0"

•  msg is a local label"
•  Assign msg sequence number 0"

28

Assembler Pass 1 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler increments 
RODATA section  
location counter by 
byte count of the  
string (4)…"

15

29

Assembler Data Structures (3)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 0)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"

•  RODATA location counter  
now is 4"

•  If another label were defined in  
at this point, it would mark a  
spot in RODATA at offset 4"

30

Assembler Pass 1 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler notes"
that current section  
is TEXT"

Assembler does"
nothing"

Assembler adds binding"
to Symbol Table…"

16

31

Assembler Data Structures (4)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 0)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" local" 1"

•  main marks a spot in the TEXT 
section at offset 0"

•  main is a local label (assembler 
will discover otherwise in Pass 2)"

•  Assign main sequence number 1"

32

Assembler Pass 1 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler increments"
TEXT section location"
counter by the length"
of each instruction…"

17

33

Assembler Data Structures (5)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 26)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" local" 1"

•  TEXT location counter  
now is 26"

•  If another label were  
defined at this point, it 
would mark a spot 
in TEXT at offset 26"

34

Assembler Pass 1 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler adds binding"
to Symbol Table…"

18

35

Assembler Data Structures (6)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 26)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" local" 1"
skip" TEXT" 26" local" 2"

•  skip marks a spot in the TEXT 
section at offset 26"

•  skip is a local label"
•  Assign skip sequence number 2"

36

Assembler Pass 1 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler increments"
TEXT section location"
counter by the length"
of each instruction…"

19

37

Assembler Data Structures (7)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 35)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" local" 1"
skip" TEXT" 26" local" 2"

•  TEXT location counter  
now is 35"

•  If another label were  
defined at this point, it 
would mark a spot 
in TEXT at offset 35"

38

From Assembler Pass 1 to Pass 2!

•  End of Pass 1"
•  Assembler has (partially) created Symbol Table"
•  So assembler now knows which location each label marks"

•  Beginning of Pass 2"
•  Assembler resets all section location counters…"

20

39

Assembler Data Structures (8)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 0)"
•  (Same)"

•  TEXT Section (location counter: 0)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" local" 1"
skip" TEXT" 26" local" 2"

•  Location counters 
reset to 0"

40

Assembler Pass 2!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler does nothing"

Assembler notes that 
the current section is 
RODATA"

Assembler places"
bytes in RODATA"
section, and increments"
location counter…"

21

41

Assembler Data Structures (9)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"

•  TEXT Section (location counter: 0)"
•  (Same)"

Offset! Contents (hex)! Explanation!
0" 48" ASCII code for ‘H’"
1" 69" ASCII code for ‘i’"
2" 0A" ASCII code for ‘\n’"
3" 00" ASCII code for null char"

•  Location counter 
incremented to 4"

•  RODATA section  
contains the bytes 
comprising the string"

42

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler updates"
Symbol Table…"

Assembler notes that 
the current section is 
TEXT"

22

43

Assembler Data Structures (10)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 0)"
•  (Same)"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" global" 1"
skip" TEXT" 26" local" 2"

•  main is a  
global label"

44

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler does"
nothing"

Assembler generates"
machine language"
code in current"
(TEXT) section…"

23

45

Assembler Data Structures (11)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 1)"

Offset! Contents ! Explanation!
0 55 pushl %ebp

01010101
This is a “pushl %ebp” instruction

46

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler generates"
machine language"
code in current"
(TEXT) section…"

24

47

Assembler Data Structures (12)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 3)"
Offset! Contents! Explanation!
… … …

1-2 89 E5 movl %esp,%ebp
10001001 11 100 101
This is a “movl” instruction whose source operand
is a register
 The M field designates a register
 The source register is ESP
 The destination register is EBP

48

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler generates"
machine language"
code in current"
(TEXT) section…"

25

49

Assembler Data Structures (12)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 8)"

Offset! Contents! Explanation!
… … …

3-7 E8 ???????? call getchar
11101000 ????????????????????????????????
This is a “call” instruction with a 4-byte
immmediate operand
 This the displacement

•  Assembler looks in Symbol  
Table to find offset of getchar"

•  getchar is not in Symbol Table"
•  Assembler cannot compute  

displacement that belongs 
at offset 4"

•  So…"

50

Assembler Data Structures (13)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 8)"
•  (Same)"

•  Assembler adds getchar 
to Symbol Table"

•  Then…"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" global" 1"
skip" TEXT" 26" local" 2"
getchar" ?" ?" global" 3"

26

51

Assembler Data Structures (14)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"

•  RODATA Section  
(location counter: 4)"
•  (Same)"

•  TEXT Section  
(location counter: 8)"
•  (Same)"

•  Assembler generates 
a relocation record, 
thus asking linker to  
patch code"Section! Offset! Rel Type! Seq#!

TEXT" 4" displacement" 3"

Dear Linker,!
 Please patch the TEXT section 
at offset 4. Do a “displacement” 
type of patch. The patch is with 
respect to the label whose seq 
number is 3 (i.e. getchar).!
 Sincerely,!
 Assembler!

52

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler generates"
machine language"
code in current"
(TEXT) section…"

27

53

Assembler Data Structures (15)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 11)"

Offset! Contents! Explanation!
… … …

8-10 83 F8 41 cmpl %'A',%eax
10000011 11 111 000 01000001
This is some “l” instruction that has a 1 byte
immediate operand
 The M field designates a register
 This is a “cmp” instruction
 The destination register is EAX
 The immediate operand is ‘A’

54

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler generates"
machine language"
code in current"
(TEXT) section…"

28

55

Assembler Data Structures (16)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 13)"

Offset! Contents! Explanation!
… … …

11-12 75 0D jne skip
01110101 00001101
This is a jne instruction that has a 1 byte
immediate operand
 The displacement between the destination
 instr. and the next instr. is 13

•  Assembler looks in  
Symbol Table to find  
offset of skip (26)"

•  Assembler subtracts 
offset of next instruction  
(13)"

•  Resulting displacement 
is 13"

56

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler generates"
machine language"
code in current"
(TEXT) section…"

29

57

Assembler Data Structures (16)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 18)"

Offset! Contents! Explanation!
… … …

13-17 68 ???????? pushl $msg
001101000 ????????????????????????????????
This is a pushl instruction with a 4 byte
immediate operand
 This is the data to be pushed

•  Assembler knows offset 
of msg (0) within RODATA 
section"

•  But assembler does not 
know location RODATA 
section"

•  So assembler does not 
know location of msg"

•  So…"

58

Assembler Data Structures (17)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"

•  RODATA Section  
(location counter: 4)"
•  (Same)"

•  TEXT Section  
(location counter: 18)"
•  (Same)"

•  Assembler generates 
a relocation record, 
thus asking linker to  
patch code"Section! Offset! Rel Type! Seq#!

…" …" …" …"
TEXT" 14" absolute" 0"

Dear Linker,!
 Please patch the TEXT section 
at offset 14. Do an “absolute” 
type of patch. The patch is with 
respect to the label whose seq 
number is 0 (i.e. msg).!
 Sincerely,!
 Assembler!

30

59

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler generates"
machine language"
code in current"
(TEXT) section…"

60

Assembler Data Structures (18)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 23)"

Offset! Contents! Explanation!
… … …

18-22 E8 ???????? call printf
11101000 ????????????????????????????????
This is a “call” instruction with a 4-byte
immmediate operand
 This the displacement

•  Assembler looks in Symbol  
Table to find offset of printf"

•  printf is not in Symbol Table"
•  Assembler cannot compute  

displacement that belongs 
at offset 19"

•  So…"

31

61

Assembler Data Structures (19)!
•  Symbol Table"

•  Relocation Records"
•  (Same)"

•  RODATA Section (location counter: 4)"
•  (Same)"

•  TEXT Section (location counter: 23)"
•  (Same)"

•  Assembler adds printf 
to Symbol Table"

•  Then…"

Label! Section! Offset! Local?! Seq#!
msg" RODATA" 0" local" 0"
main" TEXT" 0" global" 1"
skip" TEXT" 26" local" 2"
getchar" ?" ?" global" 3"
printf" ?" ?" global" 4"

62

Assembler Data Structures (20)!
•  Symbol Table"

•  (Same)"

•  Relocation Records"

•  RODATA Section  
(location counter: 4)"
•  (Same)"

•  TEXT Section  
(location counter: 8)"
•  (Same)"

•  Assembler generates 
a relocation record, 
thus asking linker to  
patch code"Section! Offset! Rel Type! Seq#!

…" …" …" …"
TEXT" 19" displacement" 4"

Dear Linker,!
 Please patch the TEXT section 
at offset 19. Do a “displacement” 
type of patch. The patch is with 
respect to the label whose seq 
number is 4 (i.e. printf).!
 Sincerely,!
 Assembler!

32

63

Assembler Pass 2 (cont.)!
 .section ".rodata"
msg:
 .asciz "Hi\n"
 .section ".text"
 .globl main
main:
 pushl %ebp
 movl %esp, %ebp
 call getchar
 cmpl $'A', %eax
 jne skip
 pushl $msg
 call printf
 addl $4, %esp
skip:
 movl $0, %eax
 movl %ebp, %esp
 popl %ebp
 ret

Assembler generates"
machine language"
code in current"
(TEXT) section…"

Assembler ignores"

64

Assembler Data Structures (21)!
•  Symbol Table, Relocation Records, RODATA Section"

•  (Same)"

•  TEXT Section (location counter: 31)"

Offset! Contents! Explanation!
… … …

23-25 83 C4 04 addl $4,%esp
10000011 11 000 100 00000100
This is some “l” instruction that has a 1 byte
immediate operand
 The M field designates a register
 This is an “add” instruction
 The destination register is ESP
 The immediate operand is 4

26-30 B8 00000000 movl $0,%eax
10111000 00000000000000000000000000000000
This is an instruction of the form “movl 4-byte-
immediate, %eax”
 The immediate operand is 0

33

65

Assembler Data Structures (22)!
•  Symbol Table, Relocation Records, RODATA Section"

•  (Same)"

•  TEXT Section (location counter: 35)"

Offset! Contents! Explanation!
… … …

31-32 89 EC movl %ebp,%esp
10001001 11 101 100
This is a “movl” instruction whose source operand
is a register
 The M field designates a register
 The source register is EBP
 The destination register is ESP

33 5D popl %ebp
01011101
This is a “popl %ebp” instruction

34 C3 ret
11000011
This is a “ret” instruction

66

From Assembler to Linker!

•  Assembler writes its data structures to .o file"
•  Linker:"

•  Reads .o file"
•  Works in two phases: resolution and relocation"

34

67

Linker Resolution!
•  Resolution"

•  Linker resolves references"

•  For this program, linker:"
•  Notes that Symbol Table contains undefined labels"

•  getchar and printf"
•  Fetches, from libc.a, machine language code defining getchar and

printf"
•  Adds that code to TEXT section"

•  (May add code to other sections too)"
•  Updates Symbol Table to note offsets of getchar and printf"
•  Adds column to Symbol Table to note addresses of all labels"

68

Linker Relocation!
•  Relocation"

•  Linker patches (“relocates”) code"
•  Linker traverses relocation records, patching code as specified"

•  For this program"
Section! Offset! Rel Type! Seq#!
TEXT" 4" displacement" 3"
TEXT" 14" absolute" 0"
TEXT" 19" displacement" 4"

•  Linker looks up offset of getchar"
•  Linker computes: 

[offset of getchar] – 8"
•  Linker places difference in TEXT 

section at offset 4"

35

69

Linker Relocation (cont.)!

•  For this program"

Section! Offset! Rel Type! Seq#!
TEXT" 4" displacement" 3"
TEXT" 14" absolute" 0"
TEXT" 19" displacement" 4"

•  Linker looks up addr of msg"
•  Linker places addr in TEXT 

section at offset 14"

70

Linker Relocation (cont.)!

•  For this program"

Section! Offset! Rel Type! Seq#!
TEXT" 4" displacement" 3"
TEXT" 14" absolute" 0"
TEXT" 19" displacement" 4"

•  Linker looks up offset of printf"
•  Linker computes: 

[offset of printf] – 23"
•  Linker places difference in TEXT 

section at offset 19"

36

71

Linker Finishes!

•  Linker writes resulting TEXT, RODATA, DATA, BSS
sections to executable binary file"

72

ELF: Executable and Linking Format!

•  Unix format of object and executable files"
•  Output by the assembler"
•  Input and output of linker"

ELF Header
Program Hdr

Table
Section 1

Section n
. . .

Section Hdr
Table

optional for .o files

optional for a.out files

37

73

Conclusions!
• Assembler: reads assembly language file"

•  Pass 1: Generates Symbol Table"
•  Contains info about labels"

•  Pass 2: Uses Symbol Table to generate code"
•  TEXT, RODATA, DATA, BSS sections"
•  Relocation Records"

•  Writes object file (ELF)"

• Linker: reads object files"
•  Resolution: Resolves references to make Symbol Table

complete"
•  Relocation: Uses Symbol Table and Relocation Records

to patch code"
•  Writes executable binary file (ELF)"

74

Appendix: Generating Machine Lang!

•  Hint for Buffer Overrun assignment…"

•  Given an assembly language instruction, how can you find
the machine language equivalent?"

•  Option 1: Consult IA-32 reference manuals"
•  See course Web pages for links to the manuals"

38

75

Appendix: Generating Machine Lang!

•  Option 2:"
•  Compose an assembly language program that contains the given

assembly language instruction"
•  Then use gdb…"

76

Appendix: Generating Machine Lang!
•  Using gdb"
$ gcc217 detecta.s –o detecta
$ gdb detecta
(gdb) x/12i main
0x80483b4 <main>: push %ebp
0x80483b5 <main+1>: mov %esp,%ebp
0x80483b7 <main+3>: call 0x8048298 <getchar@plt>
0x80483bc <main+8>: cmp $0x41,%eax
0x80483bf <main+11>: jne 0x80483ce <skip>
0x80483c1 <main+13>: push $0x80484b0
0x80483c6 <main+18>: call 0x80482c8 <printf@plt>
0x80483cb <main+23>: add $0x4,%esp
0x80483ce <skip>: mov $0x0,%eax
0x80483d3 <skip+5>: mov %ebp,%esp
0x80483d5 <skip+7>: pop %ebp
0x80483d6 <skip+8>: ret
(gdb) x/35b main
0x0 <main>: 0x55 0x89 0xe5 0xe8 0xfc 0xff 0xff 0xff
0x8 <main+8>: 0x83 0xf8 0x41 0x75 0x0d 0x68 0x00 0x00
0x10 <main+16>: 0x00 0x00 0xe8 0xfc 0xff 0xff 0xff 0x83
0x18 <main+24>: 0xc4 0x04 0xb8 0x00 0x00 0x00 0x00 0x89
0x20 <skip+6>: 0xec 0x5d 0xc3
(gdb) quit

Build program; run gdb from shell"

Issue x/i command to examine"
memory as instructions"

Issue x/b command"
to examine memory"
as raw bytes"

Match instructions to bytes"

39

77

Appendix: Generating Machine Lang!

• Option 3: "
•  Compose an assembly language program that contains the given

assembly language instruction"
•  Then use objdump – a special purpose tool…"

78

Appendix: Generating Machine Lang!
•  Using objdump"
$ gcc217 detecta.s –o detecta
$ objdump –d detecta
detecta: file format elf32-i386
…
Disassembly of section .text:
…
080483b4 <main>:
 80483b4: 55 push %ebp
 80483b5: 89 e5 mov %esp,%ebp
 80483b7: e8 dc fe ff ff call 8048298 <getchar@plt>
 80483bc: 83 f8 41 cmp $0x41,%eax
 80483bf: 75 0d jne 80483ce <skip>
 80483c1: 68 b0 84 04 08 push $0x80484b0
 80483c6: e8 fd fe ff ff call 80482c8 <printf@plt>
 80483cb: 83 c4 04 add $0x4,%esp

080483ce <skip>:
 80483ce: b8 00 00 00 00 mov $0x0,%eax
 80483d3: 89 ec mov %ebp,%esp
 80483d5: 5d pop %ebp
 80483d6: c3 ret
…

Build program; run objdump"

Machine language"

Assembly language"

