
1

1

Testing!

The material for this lecture is drawn, in part, from!
The Practice of Programming (Kernighan & Pike) Chapter 6!

2

Relevant Quotations!

“On two occasions I have been asked [by members of Parliament!], !
‘Pray, Mr. Babbage, if you put into the machine wrong figures, will !
the right answers come out?’ I am not able rightly to apprehend the !
kind of confusion of ideas that could provoke such a question.”!
 ‒ Charles Babbage !
!
“Program testing can be quite effective for showing the presence !
of bugs, but is hopelessly inadequate for showing their absence.”!
 ‒ Edsger Dijkstra!
!
“Beware of bugs in the above code; I have only proved it correct,  
not tried it.”  
 ‒ Donald Knuth !
!

2

3

Goals of this Lecture!
• Help you learn about:!

•  Internal testing!
•  External testing!
•  General testing strategies!

• Why?!
•  It’s hard to know if a large program works properly!
•  A power programmer expends at least as much effort

writing test code as he/she expends writing the
program itself!

•  A power programmer knows many testing strategies!

4

Program Verification!

•  Ideally: Prove that your program is correct!
•  Can you prove properties of the program?!
•  Can you prove that it even terminates?!!!!

•  See Turing’s “Halting Problem”!

Program
Checker program.c

Right or Wrong
Specification

?

3

5

Program Testing!

• Pragmatically: Convince yourself that your
program probably works!

Testing
Strategy program.c

Probably Right
or

Certainly Wrong

Specification

6

External vs. Internal Testing!

• Types of testing!

•  External testing!
•  Designing data to test your program!

•  Internal testing!
•  Designing your program to test itself!

4

7

External Testing!

• External Testing!
•  Designing data to test your program!
•  4 techniques…!

!

!

8

Statement Testing!
!

(1) Statement testing!

•  “Testing to satisfy the criterion that each statement in a program be
executed at least once during program testing.”!
‒ Glossary of Computerized System and Software Development Terminology!

!

5

9

Statement Testing Example!
•  Example pseudocode:!

!

if (condition1)
 statement1;
else
 statement2;
…
if (condition2)
 statement3;
else
 statement4;
…

Statement testing:!

Should make sure both “if”
statements and all 4 nested
statements are executed!

How many data
sets are required?!

10

Path Testing!

(2) Path testing!
•  “Testing to satisfy coverage criteria that each logical path through

the program be tested. Often paths through the program are
grouped into a finite set of classes. One path from each class is then
tested.” !
‒ Glossary of Computerized System and Software Development Terminology!

•  More difficult than statement testing!
•  For simple programs, can enumerate all paths through the code!
•  Otherwise, sample paths through code with random input!

6

11

Path Testing Example!
•  Example pseudocode:!

•  Realistic program => combinatorial explosion!!!!

if (condition1)
 statement1;
else
 statement2;
…
if (condition2)
 statement3;
else
 statement4;
…

Path testing:!

Should make sure all logical
paths are executed!

How many data
sets are required?!

12

Boundary Testing!

(3) Boundary testing!
•  “A testing technique using input values at, just below, and just

above, the defined limits of an input domain; and with input values
causing outputs to be at, just below, and just above, the defined
limits of an output domain.”!
!‒ Glossary of Computerized System and Software Development Terminology!

•  Alias corner case testing!

7

13

Boundary Testing Example!
•  Specification:!

•  Read line from stdin, store as string in array (without ‘\n’)!

•  First attempt:!
int i;
char s[ARRAYSIZE];
for (i=0; ((i < ARRAYSIZE-1) && (s[i]=getchar()) != '\n'); i++)
 ;
s[i] = '\0';

Does it work?!

14

Example Boundary Conditions!

•  Consider boundary conditions:!
1. stdin contains no characters (empty file)!
2. stdin starts with '\n' (empty line)!
3. stdin contains characters but no '\n‘!
4. stdin line contains exactly ARRAYSIZE-1 characters!
5. stdin line contains exactly ARRAYSIZE characters!
6. stdin line contains more than ARRAYSIZE characters!

8

15

Testing the First Attempt!
•  Embed code in complete program:!

#include <stdio.h>
enum {ARRAYSIZE = 5}; /* Artificially small */
int main(void)
{
 int i;
 char s[ARRAYSIZE];
 for (i=0; ((i < ARRAYSIZE-1) && (s[i]=getchar()) != '\n'); i++)
 ;
 s[i] = '\0';
 for (i = 0; i < ARRAYSIZE; i++) {
 if (s[i] == '\0') break;
 putchar(s[i]);
 }
 return 0;
}

16

Test Results for First Attempt!

1.  stdin contains no characters (empty file)!
•  → ÿÿÿÿÿ

2.  stdin starts with '\n' (empty line)!
•  n →

3.  stdin contains characters but no '\n‘!
•  ab → abÿÿÿ

4.  stdin line contains exactly ARRAYSIZE-1 characters!
•  abcn → abc

5.  stdin line contains exactly ARRAYSIZE characters!
•  abcdn → abcd

6.  stdin line contains more than ARRAYSIZE characters!
•  abcden → abcd

!

int i;
char s[ARRAYSIZE];
for (i=0; ((i < ARRAYSIZE) && (s[i]=getchar()) != '\n')); i++)
 ;
s[i] = '\0';

Pass!

Pass!

Pass!

Pass or Fail???!

Fail!

Fail!

Again:!
Does it work?!

9

17

Ambiguity in Specification!
•  If stdin line is too long, what should happen?!

•  Keep first ARRAYSIZE characters, discard the rest?!
•  Keep first ARRAYSIZE -1 characters + '\0' char, discard the rest?!
•  Keep first ARRAYSIZE -1 characters + '\0' char, save the rest for the

next call to the input function?!

•  Probably, the specification didn’t even say what to do if
MAXLINE is exceeded!
•  Probably the person specifying it would prefer that unlimited-length

lines be handled without any special cases at all!
•  Moral: testing has uncovered a design problem, maybe even a

specification problem!!

•  Define what to do!
•  Keep first ARRAYSIZE -1 characters + '\0' char, save the rest for the

next call to the input function!

18

A Second Attempt!
•  Second attempt:!

 int i;
 char s[ARRAYSIZE];
 for (i = 0; i < ARRAYSIZE; i++) {
 s[i] = getchar();
 if ((s[i] == EOF) || (s[i] == '\n'))
 break;
 }
 s[i] = '\0';

Does it work?!

10

19

Testing the Second Attempt!
•  Embed code in complete program:!

#include <stdio.h>
enum {ARRAYSIZE = 5}; /* Artificially small */
int main(void)
{
 int i;
 char s[ARRAYSIZE];
 for (i = 0; i < ARRAYSIZE; i++) {
 s[i] = getchar();
 if ((s[i] == EOF) || (s[i] == '\n'))
 break;
 }
 s[i] = '\0';
 for (i = 0; i < ARRAYSIZE; i++) {
 if (s[i] == '\0') break;
 putchar(s[i]);
 }
 return 0;
}

20

Test Results for Second Attempt!

1.  stdin contains no characters (empty file)!
•  →

2.  stdin starts with '\n' (empty line)!
•  n →

3.  stdin contains characters but no '\n‘!
•  ab → ab

4.  stdin line contains exactly ARRAYSIZE-1 characters!
•  abcn → abc

5.  stdin line contains exactly ARRAYSIZE characters!
•  abcdn → abcd

6.  stdin line contains more than ARRAYSIZE characters!
•  abcden → abcd

!

 int i;
 char s[ARRAYSIZE];
 for (i = 0; i < ARRAYSIZE; i++) {
 s[i] = getchar();
 if ((s[i] == EOF) || (s[i] == '\n'))
 break;
 }
 s[i] = '\0';

Pass!

Pass!

Pass!

Pass!

Pass!

Pass!

Again:!
Does it work?!

11

21

Morals of this Little Story!

•  Testing can reveal the presence of bugs, but not their
absence!

•  Complicated boundary cases often are symptomatic of bad
design or bad specification!
•  Clean up the specification if you can!
•  Otherwise, fix the code!

22

Stress Testing!

(4) Stress testing!
•  “Testing conducted to evaluate a system or component at or beyond

the limits of its specified requirements”!
‒ Glossary of Computerized System and Software Development Terminology!

!
•  What to generate!

•  Very large input sets!
•  Random input sets (binary vs. ASCII)!

•  Use computer to generate input sets!

12

23

Stress Testing Example 1!
•  Specification: Copy all characters of stdin to stdout !
•  Attempt:!

#include <stdio.h>
int main(void) {
 char c;
 while ((c = getchar()) != EOF)
 putchar(c);
 return 0;
}

Does it work?!
Hint: Consider random input sets!

Does this example shed light on
the previous one?!

24

Stress Testing Example 2!
•  Specification: Print number of characters in stdin!
•  Attempt:!

!

#include <stdio.h>
int main(void) {
 char charCount = 0;
 while (getchar() != EOF)
 charCount++;
 printf("%d\n", charCount);
 return 0;
}

Does it work?!
Hint: Consider large input sets!

13

25

External Testing Summary!

•  External testing: Designing data to test your program!

•  External testing taxonomy 
 (1) Statement testing  
 (2) Path testing  
 (3) Boundary testing  
 (4) Stress testing  
!

26

Aside: The assert Macro!
!
•  The assert macro!

•  One actual parameter!
•  Should evaluate to 0 (FALSE) or non-0 (TRUE)!

•  If TRUE:!
•  Do nothing!

•  If FALSE:!
•  Print message to stderr “assert at line x failed”!
•  Exit the process!

14

27

Uses of assert
•  Typical uses of assert

•  Validate formal parameters!

•  Check for “impossible” logical flow!

•  Check invariants (described in a few slides)!

int gcd(int i, int j) {
 assert(i > 0);
 assert(j > 0);
 …
}

switch (state) {
 case START: … break;
 case COMMENT: … break;
 …
 default: assert(0); /* Never should get here */
}

28

Internal Testing!

•  Internal testing!
•  Designing your program to test itself!
•  4 techniques…!

15

29

Checking Invariants!
(1) Checking invariants!

•  Function should check aspects of data structures that shouldn’t vary!

•  Remember this for Assignment 6…!
•  Example: “doubly-linked list insertion” function!

•  At leading and trailing edges!
•  Traverse doubly-linked list;  

when node x points forward  
 to node y, does node y point 
 backward to node x?!

•  Example: “balanced binary search tree insertion” function!
•  At leading and trailing edges!

•  Traverse tree; 
are nodes still sorted?!

What other 
invariants could  
 be checked?!

What other 
invariants could  
 be checked?!

30

Checking Invariants (cont.)!
•  Convenient to use assert to check invariants!

int isValid(MyType object) {
 …
 Check invariants here.
 Return 1 (TRUE) if object passes
 all tests, and 0 (FALSE) otherwise.
 …
}

void myFunction(MyType object) {
 assert(isValid(object));
 …
 Manipulate object here.
 …
 assert(isValid(object));
}

16

31

Checking Return Values!
(2) Checking function return values!

•  In Java and C++:!
•  Method that detects error can “throw a checked exception”!
•  Calling method must handle the exception (or rethrow it)!

•  In C:!
•  No exception-handling mechanism!
•  Function that detects error typically indicates so via return value!
•  Programmer easily can forget to check return value!
•  Programmer (generally) should check return value!

32

Checking Return Values (cont.)!
(2) Checking function return values (cont.)!

•  Example: scanf() returns number of values read!

•  Example: printf() can fail if writing to file and disk is full; returns
number of characters (not values) written!

int i;
if (scanf("%d", &i) != 1)
 /* Error */

int i = 100;
if (printf("%d", i) != 3)
 /* Error */

int i;
scanf("%d", &i);

Bad code! Good code!

int i = 100;
printf("%d", i);

Bad code???! Good code???!

Is this
overkill?!

17

33

Changing Code Temporarily!
(3) Changing code temporarily!

•  Temporarily change code to generate artificial boundary or stress
tests!

•  Example: Array-based sorting program!
•  Temporarily make array very small!
•  Does the program handle overflow?!

•  Remember this for Assignment 3…!

•  Example: Program that uses a hash table!
•  Temporarily make hash function return a constant!
•  All bindings map to one bucket, which becomes very large!
•  Does the program handle large buckets?!

34

Leaving Testing Code Intact!
!
(4) Leaving testing code intact!

•  Do not remove testing code when your code is finished!
•  In industry, no code ever is “finished”!!!!

•  Leave tests in the code!
•  Maybe embed in calls of assert

•  Calls of assert can be disabled; described in precept!

18

35

Internal Testing Summary!

•  Internal testing: Designing your program to test itself!

•  Internal testing techniques!
(1) Checking invariants!
(2) Checking function return values!
(3) Changing code temporarily!
(4) Leaving testing code intact!

!

Beware: Do you see a
conflict between internal
testing and code clarity?!

36

General Testing Strategies!

• General testing strategies!
•  5 strategies…!

!

19

37

Automation!
(1) Automation!
!

•  Create scripts and data files  
 to test your programs!

•  Create software clients  
 to test your modules!

•  Know what to expect!
•  Generate output that is easy 

 to recognize as right or wrong!

•  Automated testing can provide:!
•  Much better coverage than manual testing!
•  Bonus: Examples of typical use of your code!

Have you used
these techniques

in COS 217
programming
assignments?!

38

Testing Incrementally!
(2) Testing incrementally!
!

•  Test as you write code!
•  Add test cases as you create new code!
•  Test individual modules, and then their interaction!

•  Do regression testing!
•  After a bug fix, make sure program has not “regressed”!

•  That is, make sure previously working code is not broken!
•  Rerun all test cases!
•  Note the value of automation!!!!

20

39

Testing Incrementally (cont.)!
(2) Testing incrementally (cont.)!

•  Create scaffolds and stubs to test the code that you care about!

Function that you care about

Function 2 Function 3

Function 1

Scaffold: Temporary!
code that calls code !
that you care about!

Stub: Temporary!
code that is called!
by code that you!
care about!

40

Comparing Implementations!
!
(3) Comparing implementations!

•  Make sure independent implementations behave the same!

Could you have you used
this technique in COS 217

programming assignments?!

21

41

Bug-Driven Testing!
!
(4) Bug-driven testing!

•  Find a bug => create a test case that catches it!

•  Facilitates regression testing!

42

Fault Injection!
!
(5) Fault injection!

•  Intentionally (temporarily) inject bugs!!!!

•  Determine if testing finds them!

•  Test the testing!!!!

22

43

General Strategies Summary!

•  General testing strategies!
(1) Automation!
(2) Testing incrementally!
(3) Comparing implementations!
(4) Bug-driven testing!
(5) Fault injection!
!

44

Who Tests What!
•  Programmers!

•  White-box testing!
•  Pro: Programmer knows all data paths!
•  Con: Influenced by how code is designed/written !

•  Quality Assurance (QA) engineers!
•  Black-box testing!
•  Pro: No knowledge about the implementation!
•  Con: Unlikely to test all logical paths!

•  Customers!
•  Field testing!
•  Pros: Unexpected ways of using the software; “debug” specs!
•  Cons: Not enough cases; customers don’t like “participating” in this

process; malicious users exploit the bugs!

23

45

Summary!

•  External testing taxonomy!
•  Statement testing!
•  Path testing!
•  Boundary testing!
•  Stress testing!

•  Internal testing techniques!
•  Checking invariants!
•  Checking function return values!
•  Changing code temporarily!
•  Leaving testing code intact!

46

Summary (cont.)!

•  General testing strategies!
•  Automation!
•  Testing incrementally!

•  Regression testing!
•  Scaffolds and stubs!

•  Comparing independent implementations!
•  Bug-driven testing!
•  Fault injection!

•  Test the code, the tests – and the specification!!

