COS 426
Computer Graphics
Princeton University

Tianqiang Liu (Tim)
Feb 29, 2012

Thanks to Vladimir Kim for providing the slides!
Mesh Processing

• **Half Edge representation**
 – Data structure
 – How to load a shape?
 – How to find faces adjacent to a vertex?
 – How to collapse an edge?
 – How to flip an edge?
Half Edge

- Mesh Represented by:
 - list of half edges (|HE|)
 - list of vertices (|V|)
 - list of faces (|F|)
Data structure

• A half edge contains 4 pointers:
Data structure

• A half edge contains 4 pointers:
 – adjacent face f (to the left)
Data structure

• A half edge contains 4 pointers:
 – adjacent face f (to the left)
 – source vertex v
Data structure

• A half edge contains 4 pointers:
 – adjacent face f (to the left)
 – source vertex v
 – next half edge h_{next}
Data structure

• A half edge contains 4 pointers:
 – adjacent face f (to the left)
 – source vertex v
 – next half edge h_{next}
 – ‘twin’ half edge h_{twin}
Data structure

• A half edge contains 4 pointers:
 – adjacent face f (to the left)
 – source vertex v
 – next half edge h_{next}
 – ‘twin’ half edge h_{twin}

• A vertex v has pointer to
 – an outgoing half edge
Data structure

• A half edge contains 4 pointers:
 – adjacent face f (to the left)
 – source vertex v
 – next half edge he_{next}
 – ‘twin’ half edge he_{twin}

• A vertex has pointer to
 – an outgoing half edge

• A face has pointer to
 – a boundary half edge
Mesh Processing

• **Half Edge representation**
 – Data structure
 – **How to load a shape?**
 – How to find faces adjacent to a vertex?
 – How to collapse an edge?
 – How to flip an edge?
Example Shape

• *.off: vertices + triangles
Example Shape

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
Example Shape

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
Example Shape

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
Example Shape

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
Example Shape

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to ‘next’, pointer to ‘face’
 - face: pointer to one of the inner half-edges
Example Shape

- ***.off**: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to ‘next’, pointer to ‘face’
 - face: pointer to one of the inner half-edges
Example Shape

• *.off: vertices + triangles
• Add vertices to the list
 – only coordinates
• Add half-edges with faces
 – sufficient to add inner half-edges
 – if necessary: update vertex pointers to half edges
 – each half-edge: pointer to ‘next’, pointer to ‘face’
 – face: pointer to one of the inner half-edges
Example Shape

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to ‘next’, pointer to ‘face’
 - face: pointer to one of the inner half-edges
Example Shape

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to ‘next’, pointer to ‘face’
 - face: pointer to one of the inner half-edges
Example Shape

• *.off: vertices + triangles
• Add vertices to the list
 – only coordinates
• Add half-edges with faces
 – sufficient to add inner half-edges
 – if necessary: update vertex pointers to half edges
 – each half-edge: pointer to ‘next’, pointer to ‘face’
 – face: pointer to one of the inner half-edges
 – pointer to the ‘twin’ half edge
Mesh Processing

• **Half Edge representation**
 – Data structure
 – How to load a shape?
 – **How to find faces adjacent to a vertex?**
 – How to collapse an edge?
 – How to flip an edge?
Find Adjacent Faces
Find Adjacent Faces

- Check all outgoing half edges
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
 – ADD_FACE(HE)
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
 – ADD_FACE(HE)
 – Iterate:
 • $X=\text{HE}_{\text{twin}}$
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
 – ADD_FACE(HE)
 – Iterate:
 • $X=HE_{\text{twin}}$
 • $Y=X_{\text{next}}$
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
 – ADD_FACE(HE)
 – Iterate:
 • $X = HE_{twin}$
 • $Y = X_{next}$
 • ADD_FACE(Y)
 • $HE := Y$
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
 – ADD_FACE(HE)
 – Iterate:
 • $X = \text{HE}_{\text{twin}}$
 • $Y = X_{\text{next}}$
 • ADD_FACE(Y)
 • HE := Y
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
 – ADD_FACE(HE)
 – Iterate:
 • $X=HE_{\,\text{twin}}$
 • $Y=X_{\,\text{next}}$
 • ADD_FACE(Y)
 • $HE:=Y$
Find Adjacent Faces

• Check all outgoing half edges
 – points to a half edge HE
 – ADD_FACE(HE)
 – Iterate:
 • $X = HE_{\text{twin}}$
 • $Y = X_{\text{next}}$
 • ADD_FACE(Y)
 • $HE := Y$
Mesh Processing

• **Half Edge representation**
 – Data structure
 – How to load a shape?
 – How to find faces adjacent to a vertex?
 – **How to collapse an edge?**
 – How to flip an edge?
Collapse an Edge
Collapse an Edge

• Create new vertex v
Collapse an Edge

• Create new vertex v
• Remove faces
Collapse an Edge

- Create new vertex v
- Remove faces
- Change ‘twin’ pointers
Collapse an Edge

- Create new vertex v
- Remove faces
- Change ‘twin’ pointers
Collapse an Edge

- Create new vertex v
- Remove faces
- Change ‘twin’ pointers
Collapse an Edge

- Create new vertex v
- Remove faces
- Change ‘twin’ pointers
- Remove edges
Collapse an Edge

• Create new vertex v
• Remove faces
• Change ‘twin’ pointers
• Remove edges
• Change pointers to v_1, v_2
 – check outgoing edges
Collapse an Edge

- Create new vertex v
- Remove faces
- Change ‘twin’ pointers
- Remove edges
- Change pointers to v₁, v₂
- Remove v₁, v₂
Collapse an Edge

• Create new vertex v
• Remove faces
• Change ‘twin’ pointers
• Remove edges
• Change pointers to \(v_1, v_2 \)
• Remove \(v_1, v_2 \)
• Pick an outgoing edge for v
Mesh Processing

• Half Edge representation
 – Data structure
 – How to load a shape?
 – How to find faces adjacent to a vertex?
 – How to collapse an edge?
 – How to flip an edge?
Flip an Edge
Flip an Edge

• What do we need to update?
Flip an Edge

• What do we need to update?
 – Half-edges on the edge
Flip an Edge

• What do we need to update?
 – Half-edges on the edge
 • vertex, next
Flip an Edge

• What do we need to update?
 – Half-edges on the edge
 • vertex, next
 – Adjacent half-edges
Flip an Edge

• What do we need to update?
 – Half-edges on the edge
 • vertex, next
 – Adjacent half-edges
 • next
Flip an Edge

• What do we need to update?
 – Half-edges on the edge
 • vertex, next
 – Adjacent half-edges
 • next
 – Faces
Flip an Edge

• What do we need to update?
 – Half-edges on the edge
 • vertex, next
 – Adjacent half-edges
 • next
 – Faces
 – Vertices
Flip an Edge

• What do we need to update?
 – Half-edges on the edge
 • vertex, next
 – Adjacent half-edges
 • next
 – Faces
 – Vertices
 • possibly ‘outgoing edge’
Flip an Edge

- What do we need to update?
 - Half-edges on the edge
 - vertex, next
 - Adjacent half-edges
 - next
 - Faces
 - Vertices
 - possibly ‘outgoing edge’
- Problems? Can we always flip edges?