Non-photorealistic Rendering (NPR)

COS 426

Based on slides by Adam Finkelstein, Doug DeCarlo

Non/Photorealism in painting

Bouguereau 1891

van Gogh 1889

Realistic modeling and rendering

[Deussen 99]

Non-photorealistic rendering (NPR)

[Deussen 2000]

- Explanation
- Illustration
- Storytelling
- Design

- Explanation
- Illustration
- Storytelling
- Design

- Explanation
- Illustration
- Storytelling
- Design

[Dr. Seuss]

- Explanation
- Illustration
- Storytelling
- Design

A Brief History of NPR...

NPR: Simulating various media

Technical Illustration [Saito 90]

Watercolor [Curtis 97]

Pen & Ink [Winkenbach 94]

Paint [Hertzmann 98]

NPR: Dynamic imagery

Painterly rendering for...

3D models [Meier 96]

Video [Litwinowicz 97]

NPR: Interactive rendering

[Kowalski 99]

[Gooch 98]

[Praun 01]

NPR: Abstraction & attention

Provide control over point of emphasis Control clutter in the rendered image

[Cole et al. 2006]

Stylized lines in commercial apps...

[Google SketchUp]

Tools for stylized rendering

Toon shading Stylized strokes Paper Effect **Detail Marks** Hatching Outlines

Tools for stylized rendering

Toon shading

Threshold / remap n · v

Toon shading

developpez.com

Tools for stylized rendering

Paper Effect

Height field texture:

- Peaks catch pigment
- Valleys resist pigment

Implementation:Pixel shader

Tools for stylized rendering

Hatching based on $n \cdot v$

Set of textures

Tonal Art Maps

Collection of stroke images Will blend → design with high coherence Stroke nesting property

 \leftarrow tone \rightarrow

Stroke Nesting Property

Strokes persist in finer & darker images

-	
-	
	-
	the second se
the second se	
	-
	-

Texture Blending

6-way blend \rightarrow final

Hatching direction

Along lines of principal curvature

(this can also be used for growing explicit hatching strokes)

Stroke-based hatching

[Winkenbach 94, 96]

[Sousa 99]

[Hertzmann 2000]

Painterly rendering

Object- or image-space paint strokes

3D models [Meier 96]

Video [Litwinowicz 97]

Stippling: density $\sim n \cdot v$

[Secord02]

Paper effect

[Kalnins02,03]

Tools for stylized rendering

How to Describe Shape-Conveying Lines?

Image-space features

- Object-space features
 - View-independent
 - View-dependent

[Flaxman 1805]

Image-Space Lines

- + Intuitive motivation; well-suited for GPU
- Difficult to stylize

Examples:

- Isophotes (toon-shading boundaries)
- Edges (e.g., [Canny 1986])
- Ridges, valleys of illumination
 [Pearson 1985, Rieger 1997, DeCarlo 2003, Lee 2007, ...]

Image Edges and Extremal Lines

Edges:

Local maxima of gradient magnitude, in gradient direction

Ridges/valleys:

Local minima/maxima of intensity, in direction of max Hessian eigenvector

Intrinsic properties of shape;
 can be precomputed

 Under changing view, can be misinterpreted as surface markings

Topo lines: constant altitude

Creases: infinitely sharp folds

[Saito & Takahashi 90]

Ridges and valleys (crest lines)

- Local maxima of curvature
- Sometimes effective, sometimes not

[Thirion 92, Interrante 95, Stylianou 00, Pauly 03, Ohtake 04 ...]

- + Seem to be perceived as conveying shape
- Must be recomputed per frame

Silhouettes:

- Boundaries between object and background

Occluding contours:

- Depth discontinuities
- Surface normal perpendicular to view direction

[Saito & Takahashi 90, Winkenbach & Salesin 94, Markosian et al 97, ...]

Occluding Contours

For any shape: locations of depth discontinuities

View dependent

- Also called "interior and exterior silhouettes"

Occluding Contours

For smooth shapes: points at which $n \cdot v = 0$

Occluding Contours on Meshes

Applying either definition on polygonal meshes can result in messy lines

Occluding Contours on Meshes [Hertzmann 00]

Alternative: interpolate normals within faces

- Start with per-vertex normals
- Interpolate per-face (same as Phong shading)
- Compute $n \cdot v$ at each point, find zero crossings
- Potential snag: visibility

Occluding Contours on Meshes

Contours along edges

Contour

Contours within faces

There are other lines...

[Flaxman 1805]

[Flaxman 1805]

There are other lines...

Hypothesis: some are "almost contours"

[Flaxman 1805]

Suggestive Contours

"Almost contours":

- Points that become contours in nearby views

contours + suggestive contours

contours

Suggestive Contours: Definition 1

Contours in nearby viewpoints

(not corresponding to contours in closer views)

Suggestive Contours: Definition 2

 $n \cdot v$ not quite zero, but a local minimum (in the projected view direction *w*)

contours

contours + suggestive contours

contours

contours + suggestive contours

contours

contours + suggestive contours

Comparison: object vs image

suggestive contours

image valleys

Tools for stylized rendering

Toon shading **Stylized strokes** Paper Effect **Detail Marks** Hatching Outlines

Crease Stylization

"Rubber-stamping" Synthesis from Example

Synthesis uses Markov model. Similar to "video textures" [Schödl 00]

Stylization as Offsets

- Artist over-sketches crease
- Stylization recorded as 2D offsets
- Applied to new base path

Silhouette Stylization

Silhouettes are view-dependent.

- Problem #1: localized stylization?!?
- Solution: "rubber-stamp" globally

Silhouette Tracking

Silhouettes are view-dependent.

- Problem #2: parameterization coherence
- Solution: screen-space tracking

WYSIWYG NPR

[Kalnins02]

- Retain style in new views
- Ensure coherent animation

Aesthetic flexibility

User guided approaches

- the user explicitly marks the important content

[Durand et al. 2001]

[Hertzmann 2001]

Indication in pen and ink illustration

- the user specified what content was important

[Winkenbach and Salesin 1994]

Provide control over point of emphasis Control clutter in the rendered image

[Cole et al. 2006]

Rendering specific content: trees

- automatically leave out lines in the center of the tree

[Kowalski et al.1999]

[Deussen 2000]

Select elements based on density and clutter

drop strokes in areas of high density

[Grabli et al. 2004]

[Winson and Ma 2004]

User guided approaches

- infer important content from a user's eye movements
- evaluate using eye tracking [Santella and DeCarlo 2004]

[DeCarlo and Santella 2002]

Eye movements

Eyes dwell on particular locations during *fixations* •

- Quick motions between these locations are made via saccades
- Longer fixations indicate viewer interest

Eye movements

Recorded using commercial eye-trackers

Abstraction and Stylization

[DeCarlo 2002]

Without eye movements: No meaningful abstraction

One knob to control detail...

more detail

less detail

Variations of images

Photo

High detail

Low detail

Eye tracking

Automatic Salience

NPR provides control over style, abstraction

Common ingredients: toon shading, outline strokes, hatching, paint, paper effect

