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Ray Casting 
• Primitive operation for one class of renderers: 

 Given a ray (origin, direction) 
 Find point of first intersection with scene 

• May return: 
 Whether intersection occurs 
 Point of intersection (x,y,z) 
 Parameters of intersection on object 

• Used for: 
 Camera (primary) rays: backwards ray tracing 
 Accumulate brightness from lights: forwards ray tracing 
 Shadow rays 
 Indirect illumination (path tracing) 



Traditional (Backwards) Ray Tracing 

• The color of each pixel on the view plane 
depends on the radiance emanating along rays 
from visible surfaces in scene 
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Scene 
• Scene has: 

 Scene graph with surface primitives 
 Set of lights 
 Camera 
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struct R3Scene { 
 R3Node *root; 
 vector<R3Light *> lights; 
 R3Camera camera; 
 R3Box bbox; 
 R3Rgb background; 
 R3Rgb ambient; 
}; 



Scene Graph 
• Scene graph is hierarchy of nodes, each with: 

 Bounding box (in node’s coordinate system) 
 Transformation (4x4 matrix) 
 Shape (mesh, sphere, … or null) 
 Material (more on this later) 
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• Simple scene graph implementation: 

Scene Graph 

struct R3Node { 
 struct R3Node *parent; 
 vector<struct R3Node *> children; 
 R3Shape *shape; 
 R3Matrix transformation; 
 R3Material *material; 
 R3Box bbox; 
}; 

struct R3Shape { 
 R3ShapeType type; 
 R3Box *box; 
 R3Sphere *sphere; 
 R3Cylinder *cylinder; 
 R3Cone *cone; 
 R3Mesh *mesh; 
}; 



Ray Casting 
• For each sample (pixel) … 

 Construct ray from eye position through view plane 
 Compute radiance leaving first point of intersection  

between ray and scene 
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Ray Casting 
• Simple implementation: 

R2Image *RayCast(R3Scene *scene, int width, int height) 
{ 
 R2Image *image = new R2Image(width, height); 
 for (int i = 0; i < width; i++) {  
  for (int j = 0; j < height; j++) {  
   R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j); 
   R3Rgb radiance = ComputeRadiance(scene,  &ray); 
   image->SetPixel(i, j, radiance); 
  } 
 } 
 return image; 
} 



Ray Casting 
• Simple implementation: 

R2Image *RayCast(R3Scene *scene, int width, int height) 
{ 
 R2Image *image = new R2Image(width, height); 
 for (int i = 0; i < width; i++) {  
  for (int j = 0; j < height; j++) {  
   R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j); 
   R3Rgb radiance = ComputeRadiance(scene,  &ray); 
   image->SetPixel(i, j, radiance); 
  } 
 } 
 return image; 
} 



Constructing Ray Through a Pixel 
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Constructing Ray Through a Pixel 
• 2D Example 

 

d 
Θ towards P0 

right 

right = towards × up 

Θ = frustum half-angle 
d = distance to view plane 

P1 = P0 + d*towards – d*tan(Θ)*right 
P2 = P0 + d*towards + d*tan(Θ)*right 

P1 

P2 

2*d*tan(Θ
) 

P 

P  = P1 + ((i + 0.5) / width) * (P2 - P1) 
V = (P - P0) / ||P - P0 || 
(d cancels out…) 

V 

Ray: P = P0 + tV 



Ray Casting 
• Simple implementation: 

R2Image *RayCast(R3Scene *scene, int width, int height) 
{ 
 R2Image *image = new R2Image(width, height); 
 for (int i = 0; i < width; i++) {  
  for (int j = 0; j < height; j++) {  
   R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j); 
   R3Rgb radiance = ComputeRadiance(scene,  &ray); 
   image->SetPixel(i, j, radiance); 
  } 
 } 
 return image; 
} 



Ray Casting 
• Simple implementation: 

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray) 
{ 
 R3Intersection intersection = ComputeIntersection(scene, ray); 
 return ComputeRadiance(scene, ray, intersection); 
} 

struct R3Intersection { 
 bool hit; 
 R3Node *node; 
 R3Point position; 
 R3Vector normal; 
 double t; 
}; 
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Ray Casting 
• Simple implementation: 

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray) 
{ 
 R3Intersection intersection = ComputeIntersection(scene, ray); 
 return ComputeRadiance(scene, ray, intersection); 
} 

struct R3Intersection { 
 bool hit; 
 R3Node *node; 
 R3Point position; 
 R3Vector normal; 
 double t; 
}; 
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Ray Intersection 
• Ray Intersection 

 Sphere 
 Triangle 
 Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
 Octrees 
 BSP trees 

 



Ray Intersection 
• Ray Intersection 
Sphere 
 Triangle 
 Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
 Octrees 
 BSP trees 

 



Ray-Sphere Intersection 
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Ray-Sphere Intersection 

Ray: P = P0 + tV 
Sphere: |P - O|2 - r 2 = 0  
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Ray-Sphere Intersection I 

Ray: P = P0 + tV 
Sphere: |P - O|2 - r 2 = 0  
 
Substituting for P, we get: 
 |P0 + tV - O|2 - r 2 = 0  
 
Solve quadratic equation:  
 at2 + bt + c = 0 
where: 
 a = 1 
 b = 2 V • (P0 - O)  
 c = |P0 - C|2 - r 2 = 0  
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Algebraic Method 

P = P0 + tV 



Ray-Sphere Intersection II 

Ray: P = P0 + tV 
Sphere: |P - O|2 - r 2 = 0  
 
L = O - P0 

tca = L • V 
if (tca < 0) return 0 

d2 = L • L - tca
2 

if (d2 > r2) return 0 

thc = sqrt(r2 - d2) 
t = tca - thc  and tca + thc  
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Geometric Method 

P = P0 + tV 



Ray-Sphere Intersection 
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N = (P - O) / ||P - O|| 

N 

• Need normal vector at intersection  
for lighting calculations 



Ray Intersection 
• Ray Intersection 

 Sphere 
Triangle 
 Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
 Octrees 
 BSP trees 

 



Ray-Triangle Intersection 
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Ray-Triangle Intersection 
• First, intersect ray with plane 

• Then, check if intersection point is inside triangle 
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Ray-Plane Intersection 

Ray: P = P0 + tV 
Plane: P • N + d = 0 
 
Substituting for P, we get: 
 (P0 + tV) • N + d = 0 
 
Solution:  
 t = -(P0 • N + d) / (V • N) 
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Algebraic Method 

P = P0 + tV 



Ray-Triangle Intersection I 
• Check if point is inside triangle algebraically 
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For each side of triangle 
 V1 = T1 – P0 
 V2 = T2 – P0 
 N1 = V2 x V1 
 Normalize N1 
 Plane p(P0, N1) 
 if (SignedDistance(p, P) < 0) 
  return FALSE; 
end 



Ray-Triangle Intersection II 
• Check if point is inside triangle algebraically 

P 
T1 
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V2 
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For each side of triangle 
 V1 = T1 - P 
 V2 = T2 - P 
 N1 = V2 x V1 
 Normalize N1 
 if (V • N1 < 0) 
  return FALSE; 
end 
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Ray-Triangle Intersection II 
• Check if point is inside triangle algebraically 

P 

T1 

T2 

T3 

V2 
V1 

For each side of triangle 
 V1 = T1 - P 
 V2 = T2 - P 
 N1 = V2 x V1 
 Normalize N1 
 if (V • N1 < 0) 
  return FALSE; 
end 

N1 
P0 

V 



Ray-Triangle Intersection III 
• Check if point is inside triangle parametrically 

P 

P0 

“Barycentric coordinates” α, β, γ: 
 P = αT3 + βT2 + γT1 
where α + β + γ = 1 
 
 α = Area(T1T2P) / Area(T1T2T3) 
 β = Area(T1PT3) / Area(T1T2T3) 
 γ  = Area(PT2T3) / Area(T1T2T3) 
     = 1 – α – β 
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Ray-Triangle Intersection III 
• Check if point is inside triangle parametrically 

P 

P0 

Compute “barycentric coordinates” α, β: 
 α = Area(T1T2P) / Area(T1T2T3) 
 β = Area(T1PT3) / Area(T1T2T3) 
 
Area(T1T2T3) = ½ || (T2-T1) x (T3-T1) || 
 check if backfacing: 
 ((T2-T1) × (T3-T1)) ∙ N < 0 
 
Check if point inside triangle. 
 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 
 and α + β ≤ 1 
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Ray Intersection 
• Ray Intersection 

 Sphere 
 Triangle 
Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
 Octrees 
 BSP trees 

 



Ray-Box Intersection 
• Check front-facing sides for intersection with ray 

and return closest intersection (least t) 
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Ray-Box Intersection 
• Check front-facing sides for intersection with ray 

and return closest intersection (least t) 
 Find intersection with plane 
 Check if point is inside rectangle 
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Ray-Box Intersection 
• Check front-facing sides for intersection with ray 

and return closest intersection (least t) 
 Find intersection with plane 
 Check if point is inside rectangle 
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Other Ray-Primitive Intersections 
• Cone, cylinder: 

 Similar to sphere 
 Must also check end caps 

• Convex polygon 
 Same as triangle (check point-in-polygon algebraically) 
 Or, decompose into triangles, and check all of them 

• Mesh 
 Compute intersection for all polygons 
 Return closest intersection (least t) 

http://www.cs.princeton.edu/courses/archive/spring10/cos426/assn3/output/cylinder2.jpg


Ray Intersection 
• Ray Intersection 

 Sphere 
 Triangle 
 Box 
Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
 Octrees 
 BSP trees 

 



Ray-Scene Intersection 
• Intuitive method 

 Compute intersection for all nodes of scene graph 
 Return closest intersection (least t) 
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Ray-Scene Intersection 
• Scene graph is a DAG 

 Traverse with recursion 

Camera 

Light 
Surfaces 

Sphere 

Box Cylinder 



Ray-Scene Intersection I 

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) 
{ 
 // Check for intersection with shape 
 shape_intersection = Intersect node’s shape with ray 
 if (shape_intersection is a hit) closest_intersection = shape_intersection 
 else closest_intersection = infinitely far miss 
 
 // Check for intersection with children nodes 
 for each child node 
  // Check for intersection with child contents 
  child_intersection = ComputeIntersection(scene, child, ray); 
  if (child_intersection is a hit and is closer than closest_intersection)  
   closest_intersection = child_intersection; 
  
 // Return closest intersection in tree rooted at this node 
 return closest_intersection 
} 



Ray-Scene Intersection 
• Scene graph can have transformations 
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Ray-Scene Intersection 
• Scene graph node can have transformations 

 Transform ray (not primitives) by inverse of M 
 Intersect in coordinate system of node 
 Transform intersection by M 
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Ray-Scene Intersection II 

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) 
{ 
 // Transform ray by inverse of node’s transformation 
  
 // Check for intersection with shape 
  
 // Check for intersection with children nodes 
   
 // Transform intersection by node’s transformation 
 
 // Return closest intersection in tree rooted at this node 
} 



Ray-Scene Intersection II 

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) 
{ 
 // Transform ray by inverse of node’s transformation 
  
 // Check for intersection with shape 
  
 // Check for intersection with children nodes 
   
 // Transform intersection by node’s transformation 
 
 // Return closest intersection in tree rooted at this node 
} 

Recall: directions (including 
ray direction and surface normal N) 
must be transformed by 
inverse transpose of M (or M-1 for ray) 

N 



Ray Intersection 
• Ray Intersection 

 Sphere 
 Triangle 
 Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
 Octrees 
 BSP trees 

 



Ray Intersection Acceleration 
• What if there are a lot of nodes? 

http://www.3dm3.com 



Bounding Volumes 
• Check for intersection with  

simple bounding volume first 



Bounding Volumes 
• Check for intersection with bounding volume first 



Bounding Volumes 
• Check for intersection with bounding volume first 

 If ray doesn’t intersect bounding volume,  
then it can’t intersect its contents 



Bounding Volumes 
• Check for intersection with bounding volume first 

 If already found a primitive intersection closer than 
intersection with bounding box, then skip checking 
contents of bounding box 



Bounding Volume Hierarchies 
• Scene graph has hierarchy of bounding volumes 

 Bounding volume of interior node contains all children 
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Bounding Volume Hierarchies 
• Checking bounding volumes hierarchically (within 

each node) can greatly accelerate ray intersection 
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Bounding Volume Hierarchies 
R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) 
{ 
 // Transform ray by inverse of node’s transformation 
 // Check for intersection with shape 
  
 // Check for intersection with  children nodes 
 for each child node  
  // Check for intersection with child bounding box first 
  bbox_intersection = Intersect child’s bounding box with ray 
  if (bbox_intersection is a miss or further than closest_intersection) continue 
 
  // Check for intersection with child contents 
  child_intersection = ComputeIntersection(scene, child, ray); 
  if (child_intersection is a hit and is closer than closest_intersection)  
   closest_intersection = child_intersection; 
  
 // Transform intersection by node’s transformation 
 // Return closest intersection in tree rooted at this node 
} 



Sort Bounding Volume Intersections 
• Sort child bounding volume intersections and  

then visit child nodes in front-to-back order 



Cache Node Intersections 
• For each node, store closest child intersection 

from previous ray and check that node first  
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Ray Intersection 
• Ray Intersection 

 Sphere 
 Triangle 
 Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
Uniform grids 
 Octrees 
 BSP trees 

 



Uniform Grid 
• Construct uniform grid over scene 

 Index primitives according to overlaps with grid cells 
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Uniform Grid 
• Trace rays through grid cells  

 Fast 
 Incremental 
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F Only check primitives 
in intersected grid cells 



Uniform Grid 
• Potential problem: 

 How choose suitable grid resolution?  
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if grid is too fine 



Ray Intersection 
• Ray Intersection 

 Sphere 
 Triangle 
 Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
Octrees 
 BSP trees 

 



Octree 
• Construct adaptive grid over scene 

 Recursively subdivide box-shaped cells into 8 octants 
 Index primitives by overlaps with cells 
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Octree 
• Trace rays through neighbor cells  

 Fewer cells 
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F Trade-off fewer cells for 
more expensive traversal 



Octree 
• Or, check rays versus octree boxes hierarchically 

 Computing octree boxes 
while descending tree 

 Sort eight boxes  
front-to-back at each level 

 Check primitives/children 
inside box 
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Ray Intersection 
• Ray Intersection 

 Sphere 
 Triangle 
 Box 
 Scene 

 

• Ray Intersection Acceleration 
 Bounding volumes 
 Uniform grids 
 Octrees 
BSP trees 

 



Binary Space Partition (BSP) Tree 
• Recursively partition space by planes 

 BSP tree nodes store partition plane and  
set of polygons lying on that partition plane 

 Every part of every polygon lies on a partition plane 
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Binary Space Partition (BSP) Tree 
• Traverse nodes of BSP tree front-to-back 

 Visit halfspace (child node) containing P0 
 Intersect polygons lying on partition plane 
 Visit halfspace (other child node) not containing P0 
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Binary Space Partition (BSP) Tree 

R3Intersection 
ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max_t) 
{ 
 // Compute parametric value of ray-plane intersection 
 t = ray parameter for intersection with split plane of node 
 if  (t < min_t) || (t < max_t)) return no_intersection; 
 
 // Compute side of partition plane that contains ray start point 
 int side = (SignedDistance(node->plane, ray.Start()) < 0) ? 0 : 1; 
 intersection1 = ComputeBSPIntersection(ray, node->child[side],  min_t, t); 
 if (intersection1 is a hit) return intersection1; 
 intersection2 = ComputePolygonsIntersection(ray, node->polygons); 
 if (intersection2 is a hit) return intersection2; 
 intersection3 = ComputeBSPIntersection(ray, node->child[1-side], t, max_t); 
 return intersection 3; 
} 



Other Accelerations 
• Screen space coherence – check > 1 ray at once 

 Beam tracing 
 Pencil tracing 
 Cone tracing 

• Memory coherence 
 Large scenes 

• Parallelism 
 Ray casting is “embarrassingly parallelizable” 

• etc. 
 



Acceleration 
• Intersection acceleration techniques are important 

 Bounding volume hierarchies 
 Spatial partitions 

• General concepts 
 Sort objects spatially 
 Make trivial rejections quick 
 Perform checks hierarchically 
 Utilize coherence when possible 

 

Expected time is sub-linear in number of primitives 



Summary 
• Writing a simple ray casting renderer is easy 

 Generate rays 
 Intersection tests 
 Lighting calculations 

R2Image *RayCast(R3Scene *scene, int width, int height) 
{ 
 R2Image *image = new R2Image(width, height); 
 for (int i = 0; i < width; i++) {  
  for (int j = 0; j < height; j++) {  
   R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j); 
   R3Rgb radiance = ComputeRadiance(scene,  &ray); 
   image->SetPixel(i, j, radiance); 
  } 
 } 
 return image; 
} 



Heckbert’s Business Card Ray Tracer 
• typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color; 

double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1., 
.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12., 
.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x 
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z; 
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt( vdot(A,A)),A,black);}struct sphere*intersect 
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)), 
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&& 
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;  
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta= 
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen )));if(d<0)N=vcomb(-1.,N,black), 
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&& 
intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z 
*=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d- 
sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb 
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2- 
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf 
("%.0f %.0f %.0f\n",U);}/*minray!*/  



Next Time is Illumination! 

Without Illumination With Illumination 
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