
Ray Tracing

COS 426

Ray Casting
• Primitive operation for one class of renderers:

 Given a ray (origin, direction)
 Find point of first intersection with scene

• May return:
 Whether intersection occurs
 Point of intersection (x,y,z)
 Parameters of intersection on object

• Used for:
 Camera (primary) rays: backwards ray tracing
 Accumulate brightness from lights: forwards ray tracing
 Shadow rays
 Indirect illumination (path tracing)

Traditional (Backwards) Ray Tracing

• The color of each pixel on the view plane
depends on the radiance emanating along rays
from visible surfaces in scene

Camera

Light
Surfaces

Scene
• Scene has:

 Scene graph with surface primitives
 Set of lights
 Camera

Camera

Light
Surfaces

struct R3Scene {
 R3Node *root;
 vector<R3Light *> lights;
 R3Camera camera;
 R3Box bbox;
 R3Rgb background;
 R3Rgb ambient;
};

Scene Graph
• Scene graph is hierarchy of nodes, each with:

 Bounding box (in node’s coordinate system)
 Transformation (4x4 matrix)
 Shape (mesh, sphere, … or null)
 Material (more on this later)

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

• Simple scene graph implementation:

Scene Graph

struct R3Node {
 struct R3Node *parent;
 vector<struct R3Node *> children;
 R3Shape *shape;
 R3Matrix transformation;
 R3Material *material;
 R3Box bbox;
};

struct R3Shape {
 R3ShapeType type;
 R3Box *box;
 R3Sphere *sphere;
 R3Cylinder *cylinder;
 R3Cone *cone;
 R3Mesh *mesh;
};

Ray Casting
• For each sample (pixel) …

 Construct ray from eye position through view plane
 Compute radiance leaving first point of intersection

between ray and scene

Camera

Light
Surfaces

Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;
}

Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;
}

Constructing Ray Through a Pixel

right

back

Up direction

P0

View
Plane

P

V

Ray: P = P0 + tV

Constructing Ray Through a Pixel
• 2D Example

d
Θ towards P0

right

right = towards × up

Θ = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards – d*tan(Θ)*right
P2 = P0 + d*towards + d*tan(Θ)*right

P1

P2

2*d*tan(Θ
)

P

P = P1 + ((i + 0.5) / width) * (P2 - P1)
V = (P - P0) / ||P - P0 ||
(d cancels out…)

V

Ray: P = P0 + tV

Ray Casting
• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;
}

Ray Casting
• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{
 R3Intersection intersection = ComputeIntersection(scene, ray);
 return ComputeRadiance(scene, ray, intersection);
}

struct R3Intersection {
 bool hit;
 R3Node *node;
 R3Point position;
 R3Vector normal;
 double t;
};

Camera

Light
Surfaces

Ray Casting
• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{
 R3Intersection intersection = ComputeIntersection(scene, ray);
 return ComputeRadiance(scene, ray, intersection);
}

struct R3Intersection {
 bool hit;
 R3Node *node;
 R3Point position;
 R3Vector normal;
 double t;
};

Camera

Light
Surfaces

Ray Intersection
• Ray Intersection

 Sphere
 Triangle
 Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
 Octrees
 BSP trees

Ray Intersection
• Ray Intersection
Sphere
 Triangle
 Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
 Octrees
 BSP trees

Ray-Sphere Intersection

P0

V

O

P

r

P’

Ray-Sphere Intersection

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
 |P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:
 at2 + bt + c = 0
where:
 a = 1
 b = 2 V • (P0 - O)
 c = |P0 - C|2 - r 2 = 0

P0

V

O

P

r

P’

Algebraic Method

P = P0 + tV

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V
if (tca < 0) return 0

d2 = L • L - tca
2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0

V

O

P

r

P’

r d thc

tca

L

Geometric Method

P = P0 + tV

Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection
for lighting calculations

Ray Intersection
• Ray Intersection

 Sphere
Triangle
 Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
 Octrees
 BSP trees

Ray-Triangle Intersection

P

P0

V

Ray-Triangle Intersection
• First, intersect ray with plane

• Then, check if intersection point is inside triangle

P

P0

V

Ray-Plane Intersection

Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
 (P0 + tV) • N + d = 0

Solution:
 t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV

Ray-Triangle Intersection I
• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
 V1 = T1 – P0
 V2 = T2 – P0
 N1 = V2 x V1
 Normalize N1
 Plane p(P0, N1)
 if (SignedDistance(p, P) < 0)
 return FALSE;
end

Ray-Triangle Intersection II
• Check if point is inside triangle algebraically

P
T1

T2

T3

V2
V1

For each side of triangle
 V1 = T1 - P
 V2 = T2 - P
 N1 = V2 x V1
 Normalize N1
 if (V • N1 < 0)
 return FALSE;
end

N1

P0

V

Ray-Triangle Intersection II
• Check if point is inside triangle algebraically

P

T1

T2

T3

V2
V1

For each side of triangle
 V1 = T1 - P
 V2 = T2 - P
 N1 = V2 x V1
 Normalize N1
 if (V • N1 < 0)
 return FALSE;
end

N1
P0

V

Ray-Triangle Intersection III
• Check if point is inside triangle parametrically

P

P0

“Barycentric coordinates” α, β, γ:
 P = αT3 + βT2 + γT1
where α + β + γ = 1

 α = Area(T1T2P) / Area(T1T2T3)
 β = Area(T1PT3) / Area(T1T2T3)
 γ = Area(PT2T3) / Area(T1T2T3)
 = 1 – α – β

V

α

β

T1

T2

T3

1−α−β

Ray-Triangle Intersection III
• Check if point is inside triangle parametrically

P

P0

Compute “barycentric coordinates” α, β:
 α = Area(T1T2P) / Area(T1T2T3)
 β = Area(T1PT3) / Area(T1T2T3)

Area(T1T2T3) = ½ || (T2-T1) x (T3-T1) ||
 check if backfacing:
 ((T2-T1) × (T3-T1)) ∙ N < 0

Check if point inside triangle.
 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1
 and α + β ≤ 1

V

α

β

T1

T2

T3

1−α−β

Ray Intersection
• Ray Intersection

 Sphere
 Triangle
Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
 Octrees
 BSP trees

Ray-Box Intersection
• Check front-facing sides for intersection with ray

and return closest intersection (least t)

P0

P

(x2,y2)

V

(x1,y1)

Ray-Box Intersection
• Check front-facing sides for intersection with ray

and return closest intersection (least t)
 Find intersection with plane
 Check if point is inside rectangle

P0

P

V

(x1,y1)

(x2,y2)

(0,-1)

Ray-Box Intersection
• Check front-facing sides for intersection with ray

and return closest intersection (least t)
 Find intersection with plane
 Check if point is inside rectangle

P0
V

P (x1,y1)

(x2,y2)

(0,-1)

Other Ray-Primitive Intersections
• Cone, cylinder:

 Similar to sphere
 Must also check end caps

• Convex polygon
 Same as triangle (check point-in-polygon algebraically)
 Or, decompose into triangles, and check all of them

• Mesh
 Compute intersection for all polygons
 Return closest intersection (least t)

http://www.cs.princeton.edu/courses/archive/spring10/cos426/assn3/output/cylinder2.jpg

Ray Intersection
• Ray Intersection

 Sphere
 Triangle
 Box
Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
 Octrees
 BSP trees

Ray-Scene Intersection
• Intuitive method

 Compute intersection for all nodes of scene graph
 Return closest intersection (least t)

Camera

Light
Surfaces

Ray-Scene Intersection
• Scene graph is a DAG

 Traverse with recursion

Camera

Light
Surfaces

Sphere

Box Cylinder

Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{
 // Check for intersection with shape
 shape_intersection = Intersect node’s shape with ray
 if (shape_intersection is a hit) closest_intersection = shape_intersection
 else closest_intersection = infinitely far miss

 // Check for intersection with children nodes
 for each child node
 // Check for intersection with child contents
 child_intersection = ComputeIntersection(scene, child, ray);
 if (child_intersection is a hit and is closer than closest_intersection)
 closest_intersection = child_intersection;

 // Return closest intersection in tree rooted at this node
 return closest_intersection
}

Ray-Scene Intersection
• Scene graph can have transformations

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

Ray-Scene Intersection
• Scene graph node can have transformations

 Transform ray (not primitives) by inverse of M
 Intersect in coordinate system of node
 Transform intersection by M

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{
 // Transform ray by inverse of node’s transformation

 // Check for intersection with shape

 // Check for intersection with children nodes

 // Transform intersection by node’s transformation

 // Return closest intersection in tree rooted at this node
}

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{
 // Transform ray by inverse of node’s transformation

 // Check for intersection with shape

 // Check for intersection with children nodes

 // Transform intersection by node’s transformation

 // Return closest intersection in tree rooted at this node
}

Recall: directions (including
ray direction and surface normal N)
must be transformed by
inverse transpose of M (or M-1 for ray)

N

Ray Intersection
• Ray Intersection

 Sphere
 Triangle
 Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
 Octrees
 BSP trees

Ray Intersection Acceleration
• What if there are a lot of nodes?

http://www.3dm3.com

Bounding Volumes
• Check for intersection with

simple bounding volume first

Bounding Volumes
• Check for intersection with bounding volume first

Bounding Volumes
• Check for intersection with bounding volume first

 If ray doesn’t intersect bounding volume,
then it can’t intersect its contents

Bounding Volumes
• Check for intersection with bounding volume first

 If already found a primitive intersection closer than
intersection with bounding box, then skip checking
contents of bounding box

Bounding Volume Hierarchies
• Scene graph has hierarchy of bounding volumes

 Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E F D

C

Bounding Volume Hierarchies
• Checking bounding volumes hierarchically (within

each node) can greatly accelerate ray intersection

1

2 3 C

A B E F D A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Bounding Volume Hierarchies
R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{
 // Transform ray by inverse of node’s transformation
 // Check for intersection with shape

 // Check for intersection with children nodes
 for each child node
 // Check for intersection with child bounding box first
 bbox_intersection = Intersect child’s bounding box with ray
 if (bbox_intersection is a miss or further than closest_intersection) continue

 // Check for intersection with child contents
 child_intersection = ComputeIntersection(scene, child, ray);
 if (child_intersection is a hit and is closer than closest_intersection)
 closest_intersection = child_intersection;

 // Transform intersection by node’s transformation
 // Return closest intersection in tree rooted at this node
}

Sort Bounding Volume Intersections
• Sort child bounding volume intersections and

then visit child nodes in front-to-back order

Cache Node Intersections
• For each node, store closest child intersection

from previous ray and check that node first

1

2 3 C

A B E F D A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Ray Intersection
• Ray Intersection

 Sphere
 Triangle
 Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
Uniform grids
 Octrees
 BSP trees

Uniform Grid
• Construct uniform grid over scene

 Index primitives according to overlaps with grid cells

A

B

C

D

E

F

Uniform Grid
• Trace rays through grid cells

 Fast
 Incremental

A

B

C

D

E

F Only check primitives
in intersected grid cells

Uniform Grid
• Potential problem:

 How choose suitable grid resolution?

A

B

C

D

E

F
Too little benefit

if grid is too coarse

Too much cost
if grid is too fine

Ray Intersection
• Ray Intersection

 Sphere
 Triangle
 Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
Octrees
 BSP trees

Octree
• Construct adaptive grid over scene

 Recursively subdivide box-shaped cells into 8 octants
 Index primitives by overlaps with cells

A

B

C

D

E

F Generally fewer cells

Octree
• Trace rays through neighbor cells

 Fewer cells

A

B

C

D

E

F Trade-off fewer cells for
more expensive traversal

Octree
• Or, check rays versus octree boxes hierarchically

 Computing octree boxes
while descending tree

 Sort eight boxes
front-to-back at each level

 Check primitives/children
inside box

A

B

C

D

E

F

Ray Intersection
• Ray Intersection

 Sphere
 Triangle
 Box
 Scene

• Ray Intersection Acceleration
 Bounding volumes
 Uniform grids
 Octrees
BSP trees

Binary Space Partition (BSP) Tree
• Recursively partition space by planes

 BSP tree nodes store partition plane and
set of polygons lying on that partition plane

 Every part of every polygon lies on a partition plane

a

b

c

d
e

f

1

2

3

7

4

5

6

a

b c

d e
f

g

Object

a

b

c d e
f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

Binary Space Partition (BSP) Tree
• Traverse nodes of BSP tree front-to-back

 Visit halfspace (child node) containing P0
 Intersect polygons lying on partition plane
 Visit halfspace (other child node) not containing P0

a

b

c

d
e

f

1

2

3

7

4

5

6

a

b c

d e
f

g

Object

a

b

c d e
f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

P0

Binary Space Partition (BSP) Tree

R3Intersection
ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max_t)
{
 // Compute parametric value of ray-plane intersection
 t = ray parameter for intersection with split plane of node
 if (t < min_t) || (t < max_t)) return no_intersection;

 // Compute side of partition plane that contains ray start point
 int side = (SignedDistance(node->plane, ray.Start()) < 0) ? 0 : 1;
 intersection1 = ComputeBSPIntersection(ray, node->child[side], min_t, t);
 if (intersection1 is a hit) return intersection1;
 intersection2 = ComputePolygonsIntersection(ray, node->polygons);
 if (intersection2 is a hit) return intersection2;
 intersection3 = ComputeBSPIntersection(ray, node->child[1-side], t, max_t);
 return intersection 3;
}

Other Accelerations
• Screen space coherence – check > 1 ray at once

 Beam tracing
 Pencil tracing
 Cone tracing

• Memory coherence
 Large scenes

• Parallelism
 Ray casting is “embarrassingly parallelizable”

• etc.

Acceleration
• Intersection acceleration techniques are important

 Bounding volume hierarchies
 Spatial partitions

• General concepts
 Sort objects spatially
 Make trivial rejections quick
 Perform checks hierarchically
 Utilize coherence when possible

Expected time is sub-linear in number of primitives

Summary
• Writing a simple ray casting renderer is easy

 Generate rays
 Intersection tests
 Lighting calculations

R2Image *RayCast(R3Scene *scene, int width, int height)
{
 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;
}

Heckbert’s Business Card Ray Tracer
• typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;

double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,
.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,
.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z
=U.z;e=1-eta eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-
sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf
("%.0f %.0f %.0f\n",U);}/*minray!*/

Next Time is Illumination!

Without Illumination With Illumination

	Ray Tracing
	Ray Casting
	Traditional (Backwards) Ray Tracing
	Scene
	Scene Graph
	Scene Graph
	Ray Casting
	Ray Casting
	Ray Casting
	Constructing Ray Through a Pixel
	Constructing Ray Through a Pixel
	Ray Casting
	Ray Casting
	Ray Casting
	Ray Intersection
	Ray Intersection
	Ray-Sphere Intersection
	Ray-Sphere Intersection
	Ray-Sphere Intersection I
	Ray-Sphere Intersection II
	Ray-Sphere Intersection
	Ray Intersection
	Ray-Triangle Intersection
	Ray-Triangle Intersection
	Ray-Plane Intersection
	Ray-Triangle Intersection I
	Ray-Triangle Intersection II
	Ray-Triangle Intersection II
	Ray-Triangle Intersection III
	Ray-Triangle Intersection III
	Ray Intersection
	Ray-Box Intersection
	Ray-Box Intersection
	Ray-Box Intersection
	Other Ray-Primitive Intersections
	Ray Intersection
	Ray-Scene Intersection
	Ray-Scene Intersection
	Ray-Scene Intersection I
	Ray-Scene Intersection
	Ray-Scene Intersection
	Ray-Scene Intersection II
	Ray-Scene Intersection II
	Ray Intersection
	Ray Intersection Acceleration
	Bounding Volumes
	Bounding Volumes
	Bounding Volumes
	Bounding Volumes
	Bounding Volume Hierarchies
	Bounding Volume Hierarchies
	Bounding Volume Hierarchies
	Sort Bounding Volume Intersections
	Cache Node Intersections
	Ray Intersection
	Uniform Grid
	Uniform Grid
	Uniform Grid
	Ray Intersection
	Octree
	Octree
	Octree
	Ray Intersection
	Binary Space Partition (BSP) Tree
	Binary Space Partition (BSP) Tree
	Binary Space Partition (BSP) Tree
	Other Accelerations
	Acceleration
	Summary
	Heckbert’s Business Card Ray Tracer
	Next Time is Illumination!

