Parametric Surfaces

COS 426
3D Object Representations

- **Raw data**
 - Voxels
 - Point cloud
 - Range image
 - Polygons

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Octree
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Application specific
3D Object Representations

• Raw data
 ○ Voxels
 ○ Point cloud
 ○ Range image
 ○ Polygons

• Surfaces
 ○ Mesh
 ○ Subdivision
 ➢ Parametric
 ○ Implicit

• Solids
 ○ Octree
 ○ BSP tree
 ○ CSG
 ○ Sweep

• High-level structures
 ○ Scene graph
 ○ Application specific
Parametric Surfaces

- Applications
 - Design of smooth surfaces in cars, ships, etc.
Outline

• Parametric curves
 ◦ Cubic B-Spline
 ◦ Cubic Bézier

• Parametric surfaces
 ◦ Bi-cubic B-Spline
 ◦ Bi-cubic Bézier
Outline

- **Parametric curves**
 - Cubic B-Spline
 - Cubic Bézier

- **Parametric surfaces**
 - Bi-cubic B-Spline
 - Bi-cubic Bézier
Parametric Curves

- Defined by parametric functions:
 - $x = f_x(u)$
 - $y = f_y(u)$

- Example: line segment

$$f_x(u) = (1-u)x_0 + ux_1$$
$$f_y(u) = (1-u)y_0 + uy_1$$

$u \in [0..1]$
Parametric Curves

- Defined by parametric functions:
 - $x = f_x(u)$
 - $y = f_y(u)$

- Example: ellipse

\[
\begin{align*}
 f_x(u) &= r_x \cos \frac{u}{2\pi} \\
 f_y(u) &= r_y \sin \frac{u}{2\pi}
\end{align*}
\]

$u \in [0..1]$
Parametric curves

How to easily define arbitrary curves?

\[x = f_x(u) \]
\[y = f_y(u) \]
Parametric curves

How to easily define arbitrary curves?

\[x = f_x(u) \]
\[y = f_y(u) \]

Use functions that “blend” control points

\[x = f_x(u) = V_{0x}^*(1 - u) + V_{1x}^*u \]
\[y = f_y(u) = V_{0y}^*(1 - u) + V_{1y}^*u \]
More generally:

\[x(u) = \sum_{i=0}^{n} B_i(u) * V_i x \]

\[y(u) = \sum_{i=0}^{n} B_i(u) * V_i y \]
Parametric curves

What $B(u)$ functions should we use?

\[x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_{i_x} \]

\[y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_{i_y} \]
Parametric curves

What $B(u)$ functions should we use?

\[x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i \cdot x \]
\[y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i \cdot y \]
Parametric curves

What B(u) functions should we use?

\[x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_{i_x} \]

\[y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_{i_y} \]
Parametric Polynomial Curves

• Polynomial blending functions:

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]

• Advantages of polynomials
 ○ Easy to compute
 ○ Infinitely continuous
 ○ Easy to derive curve properties
Parametric Polynomial Curves

- Polynomial blending functions:
 \[B_i(u) = \sum_{j=0}^{m} a_j u^j \]

- What degree polynomial?
 - Easy to compute
 - Easy to control
 - Expressive
Piecewise Parametric Polynomial Curves

- **Splines:**
 - Split curve into segments
 - Each segment defined by low-order polynomial blending subset of control vertices

- **Motivation:**
 - Same blending functions for every segment
 - Prove properties from blending functions
 - Provides local control & efficiency

- **Challenges**
 - How choose blending functions?
 - How determine properties?
Cubic Splines

• Some properties we might like to have:
 ○ Local control
 ○ Continuity
 ○ Interpolation?
 ○ Convex hull?

Blending functions determine properties

Properties determine blending functions

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]
Outline

- Parametric curves
 - Cubic B-Spline
 - Cubic Bézier
- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier
Cubic B-Splines

- Properties:
 - Local control
 - C^2 continuity at joints
 (infinitely continuous within each piece)
 - Approximating
 - Convex hull
Cubic B-Spline Blending Functions

Blending functions:

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]
Cubic B-Spline Blending Functions

- How derive blending functions?
 - Cubic polynomials
 - Local control
 - C^2 continuity
 - Convex hull
Cubic B-Spline Blending Functions

- Four cubic polynomials for four vertices
 - 16 variables (degrees of freedom)
 - Variables are a_i, b_i, c_i, d_i for four blending functions

\[
\begin{align*}
 b_{-0}(u) &= a_0 u^3 + b_0 u^2 + c_0 u + d_0 \\
 b_{-1}(u) &= a_1 u^3 + b_1 u^2 + c_1 u + d_1 \\
 b_{-2}(u) &= a_2 u^3 + b_2 u^2 + c_2 u + d_2 \\
 b_{-3}(u) &= a_3 u^3 + b_3 u^2 + c_3 u + d_3
\end{align*}
\]
Cubic B-Spline Blending Functions

- C^2 continuity implies 15 constraints
 - Position of two curves same
 - Derivative of two curves same
 - Second derivatives same
Cubic B-Spline Blending Functions

Fifteen continuity constraints:

\[
\begin{align*}
0 &= b_{-0}(0) & 0 &= b_{-0}'(0) & 0 &= b_{-0}''(0) \\
b_{-0}(1) &= b_{-1}(0) & b_{-0}'(1) &= b_{-1}'(0) & b_{-1}''(1) &= b_{-1}''(0) \\
b_{-1}(1) &= b_{-2}(0) & b_{-1}'(1) &= b_{-2}'(0) & b_{-2}''(1) &= b_{-2}''(0) \\
b_{-2}(1) &= b_{-3}(0) & b_{-2}'(1) &= b_{-3}'(0) & b_{-3}''(1) &= b_{-3}''(0) \\
b_{-3}(1) &= 0 & b_{-3}'(1) &= 0 & b_{-3}''(1) &= 0
\end{align*}
\]

One more convenient constraint:

\[
b_{-0}(0) + b_{-1}(0) + b_{-2}(0) + b_{-3}(0) = 1
\]
Cubic B-Spline Blending Functions

• Solving the system of equations yields:

\[b_{-3}(u) = -\frac{1}{6} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u + \frac{1}{6} \]
\[b_{-2}(u) = \frac{1}{2} u^3 - u^2 + \frac{2}{3} \]
\[b_{-1}(u) = -\frac{1}{2} u^3 + \frac{1}{2} u^2 + \frac{1}{2} u + \frac{1}{6} \]
\[b_{-0}(u) = \frac{1}{6} u^3 \]
Cubic B-Spline Blending Functions

- In matrix form:

\[Q(u) = (u^3 \quad u^2 \quad u \quad 1) \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix} \]
Cubic B-Spline Blending Functions

In plot form:

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]
Cubic B-Spline Blending Functions

- Blending functions imply properties:
 - Local control
 - Approximating
 - C^2 continuity
 - Convex hull
Outline

- Parametric curves
 - Cubic B-Spline
 - Cubic Bézier

- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier
Cubic Bézier

- Developed around 1960 by both
 - Pierre Bézier (Renault)
 - Paul de Casteljau (Citroen)

- Properties:
 - Local control
 - Continuity depends on control points
 - Interpolating (every third)

Properties determine blending functions
Blending functions determine properties
Cubic Bézier Curves

Blending functions:

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]
Cubic Bézier Curves

Bézier curves in matrix form:

\[Q(u) = \sum_{i=0}^{n} V_i \binom{n}{i} u^i (1-u)^{n-i} \]

\[= (1-u)^3 V_0 + 3u(1-u)^2 V_1 + 3u^2 (1-u)V_2 + u^3 V_3 \]

\[= \begin{pmatrix} u^3 & u^2 & u & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix} \]

\[M_{\text{Bézier}} \]
Basic properties of Bézier Curves

• Endpoint interpolation:

\[Q(0) = V_0 \]
\[Q(1) = V_n \]

• Convex hull:
 ○ Curve is contained within convex hull of control polygon

• Symmetry

\[Q(u) \text{ defined by } \{V_0, \ldots, V_n\} \equiv Q(1-u) \text{ defined by } \{V_n, \ldots, V_0\} \]
Bézier Curves

- Curve $Q(u)$ can also be defined by nested interpolation:

V_i are control points
$\{V_0, V_1, \ldots, V_n\}$ is control polygon
Enforcing Bézier Curve Continuity

- C^0: $V_3 = V_4$
- C^1: $V_5 - V_4 = V_3 - V_2$
- C^2: $V_6 - 2V_5 + V_4 = V_3 - 2V_2 + V_1$
Outline

• Parametric curves
 ◦ Cubic B-Spline
 ◦ Cubic Bézier

➢ Parametric surfaces
 ◦ Bi-cubic B-Spline
 ◦ Bi-cubic Bézier
Parametric Surfaces

- Defined by parametric functions:
 - $x = f_x(u,v)$
 - $y = f_y(u,v)$
 - $z = f_z(u,v)$

FvDFH Figure 11.42
Parametric Surfaces

• Defined by parametric functions:
 ◦ $x = f_x(u,v)$
 ◦ $y = f_y(u,v)$
 ◦ $z = f_z(u,v)$

• Example: quadrilateral

$$f_x(u,v) = (1-v)((1-u)x_0 + ux_1) + v((1-u)x_2 + ux_3)$$
$$f_y(u,v) = (1-v)((1-u)y_0 + uy_1) + v((1-u)y_2 + uy_3)$$
$$f_z(u,v) = (1-v)((1-u)z_0 + uz_1) + v((1-u)z_2 + uz_3)$$
Parametric Surfaces

- Defined by parametric functions:
 - \(x = f_x(u,v) \)
 - \(y = f_y(u,v) \)
 - \(z = f_z(u,v) \)

- Example: quadrilateral

\[
\begin{align*}
 f_x(u,v) &= (1 - v)((1 - u)x_0 + ux_1) + v((1 - u)x_2 + ux_3) \\
 f_y(u,v) &= (1 - v)((1 - u)y_0 + uy_1) + v((1 - u)y_2 + uy_3) \\
 f_z(u,v) &= (1 - v)((1 - u)z_0 + uz_1) + v((1 - u)z_2 + uz_3)
\end{align*}
\]
Parametric Surfaces

- Defined by parametric functions:
 - $x = f_x(u,v)$
 - $y = f_y(u,v)$
 - $z = f_z(u,v)$

- Example: ellipsoid

\[
\begin{align*}
 f_x(u, v) &= r_x \cos v \cos u \\
 f_y(u, v) &= r_y \cos v \sin u \\
 f_z(u, v) &= r_z \sin v
\end{align*}
\]
Piecewise Polynomial Parametric Surfaces

- Surface is partitioned into parametric patches:

Same ideas as parametric splines!

Watt Figure 6.25
Parametric Patches

- Each patch is defined by blending control points.

Same ideas as parametric curves!

FvDFH Figure 11.44
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.

Watt Figure 6.21
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Patches

• Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Bicubic Patches

Point $Q(u,v)$ on any patch is defined by combining control points with polynomial blending functions:

$$Q(u,v) = UM \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} M^T V^T$$

$$U = [u^3 \quad u^2 \quad u \quad 1] \quad V = [v^3 \quad v^2 \quad v \quad 1]$$

Where M is a matrix describing the blending functions for a parametric cubic curve (e.g., Bézier, B-spline, etc.)
B-Spline Patches

\[Q(u, v) = U M_{B\text{-Spline}} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} M_{B\text{-Spline}}^T V \]

\[M_{B\text{-Spline}} = \begin{bmatrix} -1/6 & 1/2 & -1/2 & 1/6 \\ 1/6 & 2/2 & 1/2 & 0 \\ 1/2 & -1 & 1/2 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 1/6 & 2/3 & 1/6 & 0 \end{bmatrix} \]

Watt Figure 6.28
Bézier Patches

\[
Q(u, v) = UM_{\text{Bezier}} \begin{bmatrix}
P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\
P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\
P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\
P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4}
\end{bmatrix} M_{\text{Bezier}}^T V
\]

\[
M_{\text{Bezier}} = \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

FvDFH Figure 11.42
Bézier Patches

- Properties:
 - Interpolates four corner points
 - Convex hull
 - Local control
Bézier Surfaces

- Continuity constraints are similar to the ones for Bézier splines
Bézier Surfaces

• C^0 continuity requires aligning boundary curves
Bézier Surfaces

- C^1 continuity requires aligning boundary curves and derivatives
Parametric Surfaces

• Advantages:
 ○ Easy to enumerate points on surface
 ○ Possible to describe complex shapes

• Disadvantages:
 ○ Control mesh must be quadrilaterals
 ○ Continuity constraints difficult to maintain:
 C^0 easy, C^1 possible, C^2 hard at extraordinary vertices
 ○ Hard to find intersections
Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Polygonal Mesh</th>
<th>Parametric Surface</th>
<th>Subdivision Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intuitive specification</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Local support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arbitrary topology</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Guaranteed continuity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Natural parameterization</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient display</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient intersections</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>