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Performance Improvement 
Revisited
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Goals of this Lecture

• Help you learn how to:


•  Improve program performance by exploiting knowledge 
of underlying system

•  Compiler capabilities

•  Hardware architecture

•  Program execution


• And thereby:

•  Help you to write efficient programs

•  Review material from the second half of the course
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Improving Program Performance

• Most programs are already “fast enough”


•  No need to optimize performance at all

•  Save your time, and keep the program simple/readable


• Most parts of a program are already “fast enough”

•  Usually only a small part makes the program run slowly

•  Optimize only this portion of the program, as needed


• Steps to improve execution (time) efficiency

•  Do timing studies (e.g., gprof)

•  Identify hot spots

•  Optimize that part of the program

•  Repeat as needed
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Ways to Optimize Performance

• Better data structures and algorithms


•  Improves the “asymptotic complexity”

•  Better scaling of computation/storage as input grows

•  E.g., going from O(n2) sorting algorithm to O(n log n)


•  Clearly important if large inputs are expected

•  Requires understanding data structures and algorithms


• Better source code the compiler can optimize

•  Improves the “constant factors”


•  Faster computation during each iteration of a loop

•  E.g., going from 1000n to 10n running time


•  Clearly important if a portion of code is running slowly

•  Requires understanding hardware, compiler, execution
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Helping the Compiler Do Its Job
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Optimizing Compilers

• Provide efficient mapping of program to machine


•  Register allocation

•  Code selection and ordering

•  Eliminating minor inefficiencies


• Donʼt (usually) improve asymptotic efficiency

•  Up to the programmer to select best overall algorithm


• Have difficulty overcoming “optimization blockers”

•  Potential function side-effects

•  Potential memory aliasing
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Limitations of Optimizing Compilers

• Fundamental constraint


•  Compiler must not change program behavior

•  Ever, even under rare pathological inputs


• Behavior that may be obvious to the programmer 
can be obfuscated by languages and coding styles

•  Data ranges more limited than variable types suggest

•  Array elements remain unchanged by function calls


• Most analysis is performed only within functions

•  Whole-program analysis is too expensive in most cases


• Most analysis is based only on static information

•  Compiler has difficulty anticipating run-time inputs
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Avoiding Repeated Computation

• A good compiler recognizes simple optimizations


•  Avoiding redundant computations in simple loops

•  Still, programmer may still want to make it explicit


• Example

•  Repetition of computation: n * i


for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) 
    a[n*i + j] = b[j]; 

for (i = 0; i < n; i++) { 
  int ni = n * i; 
  for (j = 0; j < n; j++) 
    a[ni + j] = b[j]; 
} 
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Worrying About Side Effects

•  Compiler cannot always avoid repeated computation


•  May not know if the code has a “side effect”

•  … that makes the transformation change the codeʼs behavior


•  Is this transformation okay?


•  Not necessarily, if


int func1(int x) { 
  return f(x) + f(x) + f(x) + f(x); 
} 

int func1(int x) { 
  return 4 * f(x); 
} 

int counter = 0; 

int f(int x) { 
  return counter++; 
} 

And this function may be defined in 
another file known only at link time! 
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Another Example on Side Effects

•  Is this optimization okay?


• Short answer: it depends

•  Compiler often cannot tell

•  Most compilers do not try to identify side effects


• Programmer knows best

•  And can decide whether the optimization is safe


for (i = 0; i < strlen(s); i++) { 
   /* Do something with s[i] */ 
} 

length = strlen(s); 
for (i = 0; i < length; i++) { 
   /* Do something with s[i] */ 
} 
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Memory Aliasing

•  Is this optimization okay?


• Not necessarily, what if xp and yp are equal?

•  First version: result is 4 times *xp

•  Second version: result is 3 times *xp


void twiddle(int *xp, int *yp) { 
   *xp += *yp; 
   *xp += *yp; 
} 

void twiddle(int *xp, int *yp) { 
   *xp += 2 * *yp; 
} 
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Memory Aliasing

• Memory aliasing


•  Single data location accessed through multiple names

•  E.g., two pointers that point to the same memory location


• Modifying the data using one name

•  Implicitly modifies the values seen through other names


• Blocks optimization by the compiler

•  The compiler cannot tell when aliasing may occur

•  … and so must forgo optimizing the code


• Programmer often does know 

•  And can optimize the code accordingly


xp, yp 
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Another Aliasing Example

•  Is this optimization okay?


• Not necessarily

•  If y and x point to the same location in memory…

•  … the correct output is “x = 10\n”


int *x, *y; 
… 
*x = 5; 
*y = 10; 
printf(“x=%d\n”, *x); 

printf(“x=5\n”); 
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Summary: Helping the Compiler

• Compiler can perform many optimizations


•  Register allocation

•  Code selection and ordering

•  Eliminating minor inefficiencies


• But often the compiler needs your help

•  Knowing if code is free of side effects

•  Knowing if memory aliasing will not happen


• Modifying the code can lead to better performance

•  Profile the code to identify the “hot spots”

•  Look at the assembly language the compiler produces

•  Rewrite the code to get the compiler to do the right thing
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Exploiting the Hardware
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Underlying Hardware

•  Implements a collection of instructions


•  Instruction set varies from one architecture to another

•  Some instructions may be faster than others


•  Registers and caches are faster than main memory

•  Number of registers and sizes of caches vary

•  Exploiting both spatial and temporal locality


•  Exploits opportunities for parallelism

•  Pipelining: decoding one instruction while running another


•  Benefits from code that runs in a sequence

•  Superscalar: perform multiple operations per clock cycle


•  Benefits from operations that can run independently

•  Speculative execution: performing instructions before knowing they 

will be reached (e.g., without knowing outcome of a branch)
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Addition Faster Than Multiplication

• Adding instead of multiplying


•  Addition is faster than multiplication


• Recognize sequences of products

•  Replace multiplication with repeated addition 


for (i = 0; i < n; i++) { 
  int ni = n * i; 
  for (j = 0; j < n; j++) 
    a[ni + j] = b[j]; 
} 

int ni = 0; 
for (i = 0; i < n; i++) { 
  for (j = 0; j < n; j++) 
    a[ni + j] = b[j]; 
  ni += n; 
} 

18 

Bit Operations Faster Than Arithmetic

• Shift operations to multiple/divide by powers of 2


•  “x >> 3” is faster than “x/8”

•  “x << 3” is faster than “x * 8”


• Bit masking is faster than 
mod operation

•   “x & 15” is faster than “x % 16”


0 0 1 1 0 1 0 1 53 

1 1 0 1 0 0 0 0 53<<2 

0 0 1 1 0 1 0 1 

0 0 0 0 1 1 1 1 

53 

& 15 

0 0 0 0 0 1 0 1 5 
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Caching: Matrix Multiplication

• Caches


•  Slower than registers, but faster than main memory

•  Both instruction caches and data caches


• Locality

•  Temporal locality: recently-referenced items are likely to 

be referenced in near future

•  Spatial locality: Items with nearby addresses tend to be 

referenced close together in time


• Matrix multiplication

•  Multiply n-by-n matrices A and B, and store in matrix C

•  Performance heavily depends on effective use of caches
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Matrix Multiply: Cache Effects


for (i=0; i<n; i++)  { 

  for (j=0; j<n; j++) { 

    for (k=0; k<n; k++)  

      c[i][j] += a[i][k] * b[k][j]; 

  } 

}  

• Reasonable cache effects

•  Good spatial locality for A

•  Poor spatial locality for B

•  Good temporal locality for C
 A
 B
 C


(i,*)


(*,j)


(i,j)
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Matrix Multiply: Cache Effects


• Rather poor cache effects

•  Bad spatial locality for A

•  Good temporal locality for B

•  Bad spatial locality for C


for (j=0; j<n; j++) { 

  for (k=0; k<n; k++) { 

    for (i=0; i<n; i++) 

      c[i][j] += a[i][k] * b[k][j]; 

  } 

} 



A
 B
 C


(*,j)


(k,j)


(*,k)
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Matrix Multiply: Cache Effects


• Good poor cache effects

•  Good temporal locality for A

•  Good spatial locality for B

•  Good spatial locality for C


for (k=0; k<n; k++) { 

  for (i=0; i<n; i++) { 

    for (j=0; j<n; j++) 

      c[i][j] += a[i][k] * b[k][j];    

  } 

} 

A
 B
 C


(i,*)

(i,k)
 (k,*)
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Parallelism: Loop Unrolling

• What limits the performance?


• Limited apparent parallelism

•  One main operation per iteration (plus book-keeping)

•  Not enough work to keep multiple functional units busy

•  Disruption of instruction pipeline from frequent branches


• Solution: unroll the loop

•  Perform multiple operations on each iteration


for (i = 0; i < length; i++) 
  sum += data[i]; 
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Parallelism: After Loop Unrolling

•  Original code


•  After loop unrolling (by three)


for (i = 0; i < length; i++) 
  sum += data[i]; 

/* Combine three elements at a time */ 
limit = length – 2; 
for (i = 0; i < limit; i+=3) 
  sum += data[i] + data[i+1] + data[i+2]; 

/* Finish any remaining elements */ 
for ( ; i < length; i++) 
  sum += data[i]; 
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Program Execution
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Avoiding Function Calls

•  Function calls are expensive


•  Caller saves registers and pushes arguments on stack

•  Callee saves registers and pushes local variables on stack

•  Call and return disrupt the sequence flow of the code


•  Function inlining:


void g(void) { 
   /* Some code */ 
} 

void f(void) { 
   … 
   g(); 
   … 
} 

void f(void) { 
   … 
   /* Some code */ 
   … 
} 

Some compilers support 
“inline” keyword directive. 
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Writing Your Own Malloc and Free

•  Dynamic memory management


• malloc() to allocate blocks of memory

• free() to free blocks of memory


•  Existing malloc() and free() implementations

•  Designed to handle a wide range of request sizes

•  Good most of the time, but rarely the best for all workloads


•  Designing your own dynamic memory management

•  Forego using traditional malloc() and free(), and write your own

•  E.g., if you know all blocks will be the same size

•  E.g., if you know blocks will usually be freed in the order allocated

•  E.g., <insert your known special property here>


Consider The Easy Way Out

•  Hardware might be cheaper


•  Developers are expensive

•  Hardware keeps dropping in price

•  Fixed inefficiency may be tolerable


•  Example

•  High-performance Web server

•  Post-connection info maintained for 120 seconds

•  At 8000 reqs/sec, almost 1M post-connection records!

•  Horrible? 128 bytes/record = 128MB of kernel memory

•  DRAM list price: $30/GB

•  Total cost of post-connection memory: $4


28 
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Understand Defaults

•  Sometimes, limits exist in OS/shell


•  Set to “reasonable” default values

•  $ ulimit –a 
•  core file size          (blocks, -c) 0 
•  data seg size           (kbytes, -d) unlimited 
•  scheduling priority             (-e) 0 
•  file size               (blocks, -f) unlimited 
•  pending signals                 (-i) 65536 
•  max locked memory       (kbytes, -l) 64 
•  max memory size         (kbytes, -m) unlimited 
•  open files                      (-n) 8192 
•  pipe size            (512 bytes, -p) 8 
•  POSIX message queues     (bytes, -q) 819200 
•  real-time priority              (-r) 0 
•  stack size              (kbytes, -s) 10240 
•  cpu time               (seconds, -t) unlimited 
•  max user processes              (-u) 1024 
•  virtual memory          (kbytes, -v) unlimited 
•  file locks                      (-x) unlimited


•  Sometimes you need to be unreasonable
 29 

Understand “Hidden” Limits

•  Company was using system w/o database

•  Use geo-targeting system for demographics


•  Map IP address to zip code

•  Lots of databases (income, etc) by zip code

•  6 digit zip = 100K possible, but only 50K really used


•  Symptoms

•  Performance looked fine on small tests (thousands of lookups/sec)

•  On deployed system, entire machine performance dropped

•  All applications handled only 100ʼs reqs/sec


•  Created one file per used zip code

•  Each file relatively small

•  System configured to cache < 50K files


30 
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Conclusion

• Work smarter, not harder


•  No need to optimize a program that is “fast enough”

•  Optimize only when, and where, necessary


• Speeding up a program

•  Better data structures and algorithms: better asymptotic 

behavior

•  Optimized code: smaller constants


• Techniques for speeding up a program

•  Coax the compiler

•  Exploit capabilities of the hardware

•  Capitalize on knowledge of program execution



