
1

1

Performance Improvement
Revisited

2

Goals of this Lecture

• Help you learn how to:

•  Improve program performance by exploiting knowledge
of underlying system

•  Compiler capabilities

•  Hardware architecture

•  Program execution

• And thereby:

•  Help you to write efficient programs

•  Review material from the second half of the course

2

3

Improving Program Performance

• Most programs are already “fast enough”

•  No need to optimize performance at all

•  Save your time, and keep the program simple/readable

• Most parts of a program are already “fast enough”

•  Usually only a small part makes the program run slowly

•  Optimize only this portion of the program, as needed

• Steps to improve execution (time) efficiency

•  Do timing studies (e.g., gprof)

•  Identify hot spots

•  Optimize that part of the program

•  Repeat as needed

4

Ways to Optimize Performance

• Better data structures and algorithms

•  Improves the “asymptotic complexity”

•  Better scaling of computation/storage as input grows

•  E.g., going from O(n2) sorting algorithm to O(n log n)

•  Clearly important if large inputs are expected

•  Requires understanding data structures and algorithms

• Better source code the compiler can optimize

•  Improves the “constant factors”

•  Faster computation during each iteration of a loop

•  E.g., going from 1000n to 10n running time

•  Clearly important if a portion of code is running slowly

•  Requires understanding hardware, compiler, execution

3

5

Helping the Compiler Do Its Job

6

Optimizing Compilers

• Provide efficient mapping of program to machine

•  Register allocation

•  Code selection and ordering

•  Eliminating minor inefficiencies

• Donʼt (usually) improve asymptotic efficiency

•  Up to the programmer to select best overall algorithm

• Have difficulty overcoming “optimization blockers”

•  Potential function side-effects

•  Potential memory aliasing

4

7

Limitations of Optimizing Compilers

• Fundamental constraint

•  Compiler must not change program behavior

•  Ever, even under rare pathological inputs

• Behavior that may be obvious to the programmer
can be obfuscated by languages and coding styles

•  Data ranges more limited than variable types suggest

•  Array elements remain unchanged by function calls

• Most analysis is performed only within functions

•  Whole-program analysis is too expensive in most cases

• Most analysis is based only on static information

•  Compiler has difficulty anticipating run-time inputs

8

Avoiding Repeated Computation

• A good compiler recognizes simple optimizations

•  Avoiding redundant computations in simple loops

•  Still, programmer may still want to make it explicit

• Example

•  Repetition of computation: n * i

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
 int ni = n * i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

5

9

Worrying About Side Effects

•  Compiler cannot always avoid repeated computation

•  May not know if the code has a “side effect”

•  … that makes the transformation change the codeʼs behavior

•  Is this transformation okay?

•  Not necessarily, if

int func1(int x) {
 return f(x) + f(x) + f(x) + f(x);
}

int func1(int x) {
 return 4 * f(x);
}

int counter = 0;

int f(int x) {
 return counter++;
}

And this function may be defined in
another file known only at link time!

10

Another Example on Side Effects

•  Is this optimization okay?

• Short answer: it depends

•  Compiler often cannot tell

•  Most compilers do not try to identify side effects

• Programmer knows best

•  And can decide whether the optimization is safe

for (i = 0; i < strlen(s); i++) {
 /* Do something with s[i] */
}

length = strlen(s);
for (i = 0; i < length; i++) {
 /* Do something with s[i] */
}

6

11

Memory Aliasing

•  Is this optimization okay?

• Not necessarily, what if xp and yp are equal?

•  First version: result is 4 times *xp

•  Second version: result is 3 times *xp

void twiddle(int *xp, int *yp) {
 *xp += *yp;
 *xp += *yp;
}

void twiddle(int *xp, int *yp) {
 *xp += 2 * *yp;
}

12

Memory Aliasing

• Memory aliasing

•  Single data location accessed through multiple names

•  E.g., two pointers that point to the same memory location

• Modifying the data using one name

•  Implicitly modifies the values seen through other names

• Blocks optimization by the compiler

•  The compiler cannot tell when aliasing may occur

•  … and so must forgo optimizing the code

• Programmer often does know

•  And can optimize the code accordingly

xp, yp

7

13

Another Aliasing Example

•  Is this optimization okay?

• Not necessarily

•  If y and x point to the same location in memory…

•  … the correct output is “x = 10\n”

int *x, *y;
…
*x = 5;
*y = 10;
printf(“x=%d\n”, *x);

printf(“x=5\n”);

14

Summary: Helping the Compiler

• Compiler can perform many optimizations

•  Register allocation

•  Code selection and ordering

•  Eliminating minor inefficiencies

• But often the compiler needs your help

•  Knowing if code is free of side effects

•  Knowing if memory aliasing will not happen

• Modifying the code can lead to better performance

•  Profile the code to identify the “hot spots”

•  Look at the assembly language the compiler produces

•  Rewrite the code to get the compiler to do the right thing

8

15

Exploiting the Hardware

16

Underlying Hardware

•  Implements a collection of instructions

•  Instruction set varies from one architecture to another

•  Some instructions may be faster than others

•  Registers and caches are faster than main memory

•  Number of registers and sizes of caches vary

•  Exploiting both spatial and temporal locality

•  Exploits opportunities for parallelism

•  Pipelining: decoding one instruction while running another

•  Benefits from code that runs in a sequence

•  Superscalar: perform multiple operations per clock cycle

•  Benefits from operations that can run independently

•  Speculative execution: performing instructions before knowing they

will be reached (e.g., without knowing outcome of a branch)

9

17

Addition Faster Than Multiplication

• Adding instead of multiplying

•  Addition is faster than multiplication

• Recognize sequences of products

•  Replace multiplication with repeated addition

for (i = 0; i < n; i++) {
 int ni = n * i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

18

Bit Operations Faster Than Arithmetic

• Shift operations to multiple/divide by powers of 2

•  “x >> 3” is faster than “x/8”

•  “x << 3” is faster than “x * 8”

• Bit masking is faster than 
mod operation

•  “x & 15” is faster than “x % 16”

0 0 1 1 0 1 0 1 53

1 1 0 1 0 0 0 0 53<<2

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 1 5

10

19

Caching: Matrix Multiplication

• Caches

•  Slower than registers, but faster than main memory

•  Both instruction caches and data caches

• Locality

•  Temporal locality: recently-referenced items are likely to

be referenced in near future

•  Spatial locality: Items with nearby addresses tend to be

referenced close together in time

• Matrix multiplication

•  Multiply n-by-n matrices A and B, and store in matrix C

•  Performance heavily depends on effective use of caches

20

Matrix Multiply: Cache Effects

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 for (k=0; k<n; k++)

 c[i][j] += a[i][k] * b[k][j];

 }

}

• Reasonable cache effects

•  Good spatial locality for A

•  Poor spatial locality for B

•  Good temporal locality for C
 A
 B
 C

(i,*)

(*,j)

(i,j)

11

21

Matrix Multiply: Cache Effects

• Rather poor cache effects

•  Bad spatial locality for A

•  Good temporal locality for B

•  Bad spatial locality for C

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * b[k][j];

 }

}

A
 B
 C

(*,j)

(k,j)

(*,k)

22

Matrix Multiply: Cache Effects

• Good poor cache effects

•  Good temporal locality for A

•  Good spatial locality for B

•  Good spatial locality for C

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 for (j=0; j<n; j++)

 c[i][j] += a[i][k] * b[k][j];

 }

}

A
 B
 C

(i,*)

(i,k)
 (k,*)

12

23

Parallelism: Loop Unrolling

• What limits the performance?

• Limited apparent parallelism

•  One main operation per iteration (plus book-keeping)

•  Not enough work to keep multiple functional units busy

•  Disruption of instruction pipeline from frequent branches

• Solution: unroll the loop

•  Perform multiple operations on each iteration

for (i = 0; i < length; i++)
 sum += data[i];

24

Parallelism: After Loop Unrolling

•  Original code

•  After loop unrolling (by three)

for (i = 0; i < length; i++)
 sum += data[i];

/* Combine three elements at a time */
limit = length – 2;
for (i = 0; i < limit; i+=3)
 sum += data[i] + data[i+1] + data[i+2];

/* Finish any remaining elements */
for (; i < length; i++)
 sum += data[i];

13

25

Program Execution

26

Avoiding Function Calls

•  Function calls are expensive

•  Caller saves registers and pushes arguments on stack

•  Callee saves registers and pushes local variables on stack

•  Call and return disrupt the sequence flow of the code

•  Function inlining:

void g(void) {
 /* Some code */
}

void f(void) {
 …
 g();
 …
}

void f(void) {
 …
 /* Some code */
 …
}

Some compilers support
“inline” keyword directive.

14

27

Writing Your Own Malloc and Free

•  Dynamic memory management

• malloc() to allocate blocks of memory

• free() to free blocks of memory

•  Existing malloc() and free() implementations

•  Designed to handle a wide range of request sizes

•  Good most of the time, but rarely the best for all workloads

•  Designing your own dynamic memory management

•  Forego using traditional malloc() and free(), and write your own

•  E.g., if you know all blocks will be the same size

•  E.g., if you know blocks will usually be freed in the order allocated

•  E.g., <insert your known special property here>

Consider The Easy Way Out

•  Hardware might be cheaper

•  Developers are expensive

•  Hardware keeps dropping in price

•  Fixed inefficiency may be tolerable

•  Example

•  High-performance Web server

•  Post-connection info maintained for 120 seconds

•  At 8000 reqs/sec, almost 1M post-connection records!

•  Horrible? 128 bytes/record = 128MB of kernel memory

•  DRAM list price: $30/GB

•  Total cost of post-connection memory: $4

28

15

Understand Defaults

•  Sometimes, limits exist in OS/shell

•  Set to “reasonable” default values

•  $ ulimit –a
•  core file size (blocks, -c) 0
•  data seg size (kbytes, -d) unlimited
•  scheduling priority (-e) 0
•  file size (blocks, -f) unlimited
•  pending signals (-i) 65536
•  max locked memory (kbytes, -l) 64
•  max memory size (kbytes, -m) unlimited
•  open files (-n) 8192
•  pipe size (512 bytes, -p) 8
•  POSIX message queues (bytes, -q) 819200
•  real-time priority (-r) 0
•  stack size (kbytes, -s) 10240
•  cpu time (seconds, -t) unlimited
•  max user processes (-u) 1024
•  virtual memory (kbytes, -v) unlimited
•  file locks (-x) unlimited

•  Sometimes you need to be unreasonable
 29

Understand “Hidden” Limits

•  Company was using system w/o database

•  Use geo-targeting system for demographics

•  Map IP address to zip code

•  Lots of databases (income, etc) by zip code

•  6 digit zip = 100K possible, but only 50K really used

•  Symptoms

•  Performance looked fine on small tests (thousands of lookups/sec)

•  On deployed system, entire machine performance dropped

•  All applications handled only 100ʼs reqs/sec

•  Created one file per used zip code

•  Each file relatively small

•  System configured to cache < 50K files

30

16

31

Conclusion

• Work smarter, not harder

•  No need to optimize a program that is “fast enough”

•  Optimize only when, and where, necessary

• Speeding up a program

•  Better data structures and algorithms: better asymptotic

behavior

•  Optimized code: smaller constants

• Techniques for speeding up a program

•  Coax the compiler

•  Exploit capabilities of the hardware

•  Capitalize on knowledge of program execution

