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COS 217:  Introduction to 
Programming Systems
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Goals for Todayʼs Class
• Course overview

•  Introductions
• Course goals
• Resources
• Grading
• Policies

• Getting started with C
• C programming language overview
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Introductions
•  Instructor-of-Record

•  Vivek Pai, Ph.D. (Professor)
•  vivek@cs.princeton.edu 

•  Preceptors (in alphabetical order)
•  Robert Dondero, Ph.D. (Lead Preceptor)

•  rdondero@cs.princeton.edu
•  Sunha Ahn

•  sahn@princeton.edu
•  Dushyant Arora

•  dushyant@cs.princeton.edu
•  Sasha Koruga

•  skoruga@cs.princeton.edu
•  Meng Zhang

•  mengz@princeton.edu
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Course Goal 1: “Programming in the Large”

• Goal 1:  “Programming in the large”
•  Help you learn how to write large  

computer programs

• Specifically, help you learn how to:
•  Write modular code

•  Hide information
•  Manage resources
•  Handle errors

•  Write portable code
•  Test and debug your code
•  Improve your codeʼs performance (and when to do so)
•  Use tools to support those activities
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Course Goal 2: “Under the Hood”
•  Goal 2:  “Look under the hood”

•  Help you learn what happens  
“under the hood” of computer systems

•  Specifically, two downward tours

•  Goal 2 supports Goal 1
•  Reveals many examples of effective abstractions

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

6 

Course Goals: Why C?
• Q:  Why C instead of Java?
• A:  C supports Goal 1 better

•  C is a lower-level language
•  C provides more opportunities to create abstractions

•  C has some flaws
•  Cʼs flaws motivate discussions of software 

engineering principles

• A:  C supports Goal 2 better
•  C facilitates language levels tour

•  C is closely related to assembly language
•  C facilitates service levels tour

•  Linux is written in C
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Course Goals: Why Linux?
• Q:  Why Linux instead of Microsoft Windows?
• A:  Linux is good for education and research

•  Linux is open-source and well-specified

• A:  Linux is good for programming
•  Linux is a variant of Unix
•  Unix has GNU, a rich open-source programming 

environment

• Help you to become a...
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Course Goals: Summary

Power Programmer!!!
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Resources: Lectures and Precepts

• Lectures
•  Describe concepts at a high level
•  Slides available online at course Web site
•  Stronger influence on exams

• Precepts
•  Support lectures by describing concepts at a lower level
•  Support your work on assignments
•  Builds practically on a subset of information

•  Important:  Precepts begin TODAY
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Resources: Website and Listserv

• Website
•  Access from http://www.cs.princeton.edu

•  Academics → Course Schedule → COS 217

• Piazza
•  http://piazza.com/class#spring2012/cos217/
•  Instructions provided in first precept
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Resources: Books
•  Required book

•  C Programming: A Modern Approach (Second Edition), King, 
2008.
•  Covers the C programming language and standard libraries

•  Highly recommended books
•  The Practice of Programming, Kernighan and Pike, 1999. 

•  Covers “programming in the large”
•  (Required for COS 333)

•  Computer Systems: A Programmer's Perspective (Second Edition), 
Bryant and O'Hallaron, 2010.
•  Covers “under the hood”
•  Some key sections are on electronic reserve
•  First edition is sufficient

•  Programming with GNU Software, Loukides and Oram, 1997.
•  Covers tools

•  All books are on reserve in Engineering Library
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Resources: Manuals

•  Manuals (for reference only, available online)
•  IA32 Intel Architecture Software Developer's Manual, Volumes 1-3
•  Tool Interface Standard & Executable and Linking Format
•  Using as, the GNU Assembler 

•  See also
•  Linux man command

• man is short for “manual”
•  For more help, type man man
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Resources: Programming Environment

Friend Center 016
or 017 Computer

hats.princeton.edu

SSH

Lab TAs

Linux
GNU

• Option 1

Your
Pgm

fedora
fez
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Resources: Programming Environment

Your PC/Mac/Linux
Computer

SSH

• Option 2
hats.princeton.edu

Linux
GNU
Your
Pgm

fedora
fez
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Resources: Programming Environment
•  Other options

•  Use your own PC/Mac/Linux computer; run GNU tools locally; run 
your programs locally

•  Use your own PC/Mac/Linux computer; run a non-GNU 
development environment locally; run your programs locally

•  Etc.

•  Notes
•  Other options cannot be used for some assignments (esp. timing 

studies)
•  Instructors cannot promise support of other options
•  Strong recommendation:  Use Option 1 or 2 for all assignments
•  First precept provides setup instructions
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Grading
• Seven programming assignments (50%)

•  Working code
•  Clean, readable, maintainable code
•  On time (penalties for late submission)
•  Final assignment counts double (12.5%)

• Exams (40%)
•  Midterm (15%)
•  Final (25%)

• Class participation (10%)
•  Lecture and precept attendance is mandatory
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Programming Assignments
•  Programming assignments

1.  A “de-comment” program
2.  A string module
3.  A symbol table module 
4.  IA-32 assembly language programs
5.  A buffer overrun attack
6.  A heap manager module
7.  A Unix shell 

•  Key part of the course
•  See course “Schedule” web page for due dates/times
•  First assignment is available now
•  Advice: Start early to allow time for debugging (especially in 

the background while you are doing other things!)…

18 

Why Debugging is Necessary…
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Policies
Study the course “Policies” web page!
•  Especially the assignment collaboration policies

•  Violation involves trial by Committee on Discipline
•  Typical penalty is suspension from University for 1 academic year

•  Some highlights:
•  Donʼt view anyone elseʼs work during, before, or after the 

assignment time period
•  Donʼt allow anyone to view your work during, before, or after the 

assignment time period
•  In your assignment “readme” file, acknowledge all resources used

•  Ask your preceptor for clarifications if necessary
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Course Schedule
•  Very generally…

Weeks Lectures Precepts
1-2 Intro to C (conceptual) Intro to Linux/GNU 

Intro to C (mechanical)
3-6 “Pgmming in the Large” Advanced C
6 Midterm Exam
7 Recess
8-13 “Under the Hood” Assembly Language 

Pgmming Assignments
Reading Period

Final Exam

•  See course “Schedule” web page for details
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Any questions before we start?

22 

C vs. Java: History

BCPL B C K&R C ANSI C89
ISO C90 ISO/ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk C++ Java

Not yet popular;
our compiler 
supports only
partiallyWe will use
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C vs. Java: Design Goals
•  Java design goals

•  Support object-oriented programming
•  Allow same program to be executed on multiple operating systems 
•  Support using computer networks 
•  Execute code from remote sources securely
•  Adopt the good parts of other languages (esp. C and C++) 

•  Implications for Java
•  Good for application-level programming
•  High-level

•  Virtual machine insulates programmer from underlying assembly 
language, machine language, hardware

•  Portability over efficiency
•  Security over efficiency
•  Security over flexibility
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C vs. Java: Design Goals
•  C design goals

•  Support structured programming
•  Support development of the Unix OS and Unix tools

•  As Unix became popular, so did C

•  Implications for C
•  Good for system-level programming

•  But often used for application-level programming – sometimes 
inappropriately

•  Low-level
•  Close to assembly language; close to machine language; close 

to hardware
•  Efficiency over portability
•  Efficiency over security
•  Flexibility over security
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C vs. Java: Design Goals

•  Differences in design goals explain many differences 
between the languages

•  Cʼs design goal explains many of its eccentricities

•  Weʼll see examples throughout the course
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C vs. Java: Overview

•  Dennis Ritchie on the nature of C:

•  “C has always been a language that never attempts to tie a 
programmer down.”

•  “C has always appealed to systems programmers who like the terse, 
concise manner in which powerful expressions can be coded.” 

•  “C allowed programmers to (while sacrificing portability) have direct 
access to many machine-level features that would otherwise require 
the use of assembly language.”

•  “C is quirky, flawed, and an enormous success. While accidents of 
history surely helped, it evidently satisfied a need for a system 
implementation language efficient enough to displace assembly 
language, yet sufficiently abstract and fluent to describe algorithms 
and interactions in a wide variety of environments.”
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C vs. Java: Overview (cont.)

•  Bad things you can do in C that you canʼt do in Java
•  Shoot yourself in the foot (safety)
•  Shoot others in the foot (security)
•  Ignore wounds (error handling)

•  Dangerous things you must do in C that you donʼt in Java
•  Explicitly manage memory via malloc() and free() 

•  Good things you can do in C, but (more or less) must do in 
Java
•  Program using the object-oriented style

•  Good things you canʼt do in C but can do in Java
•  Write completely portable code

28 

C vs. Java: Details

•  Remaining slides provide some details
•  Suggestion:  Use for future reference

•  Slides covered briefly now, as time allows…
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C vs. Java: Details (cont.)
Java C

Overall 
Program 
Structure

Hello.java: 

public class Hello { 
  public static void 
    main(String[] args) { 
      System.out.println( 
        "Hello, world"); 
  } 
}  

hello.c: 

#include <stdio.h> 

int main(void) { 
  printf("Hello, world\n"); 
  return 0; 
} 

Building

% javac Hello.java 
% ls 
Hello.class 
Hello.java 
% 

% gcc217 hello.c 
% ls 
a.out 
hello.c 
%  

Running
% java Hello 
Hello, world 
% 

% a.out 
Hello, world 
% 
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C vs. Java: Details (cont.)

Java C
Character type char  // 16-bit unicode char /* 8 bits */ 

Integral types
byte    // 8 bits 
short   // 16 bits 
int     // 32 bits 
long    // 64 bits 

(unsigned) char 
(unsigned) short 
(unsigned) int 
(unsigned) long 

Floating point 
types

float   // 32 bits 
double  // 64 bits 

float 
double 
long double 

Logical type boolean /* no equivalent */ 
/* use integral type */ 

Generic 
pointer type // no equivalent void* 

Constants final int MAX = 1000; 
#define MAX 1000 
const int MAX = 1000; 
enum {MAX = 1000}; 
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C vs. Java: Details (cont.)

Java C

Arrays
int [] a = new int [10]; 
float [][] b =  
    new float [5][20]; 

int a[10]; 
float b[5][20]; 

Array bound 
checking // run-time check /* no run-time check */ 

Pointer type // Object reference is an 
// implicit pointer 

int *p; 

Record type
class Mine { 
    int x; 
    float y; 
} 

struct Mine { 
    int x; 
    float y; 
} 
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C vs. Java: Details (cont.)

Java C

Strings
String s1 = "Hello"; 
String s2 = new 
    String("hello");  

char *s1 = "Hello"; 
char s2[6]; 
strcpy(s2, "hello"); 

String 
concatenation

s1 + s2 
s1 += s2 

#include <string.h> 
strcat(s1, s2); 

Logical ops &&, ||, ! &&, ||, ! 

Relational ops =, !=, >, <, >=, <= =, !=, >, <, >=, <= 

Arithmetic 
ops +, -, *, /, %, unary - +, -, *, /, %, unary - 

Bitwise ops >>, <<, >>>, &, |, ^ >>, <<, &, |, ^ 

Assignment 
ops

=, *=, /=, +=, -=, <<=, 
>>=, >>>=, =, ^=, |=, %= 

=, *=, /=, +=, -=, <<=, 
>>=, =, ^=, |=, %= 
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C vs. Java: Details (cont.)
Java C

if stmt
if (i < 0) 
    statement1; 
else 
    statement2; 

if (i < 0) 
    statement1; 
else 
    statement2; 

switch stmt

switch (i) { 
  case 1:   
      ... 
      break;  
  case 2:   
      ... 
      break;  
  default: 
      ... 
} 

switch (i) { 
  case 1:   
      ... 
      break;  
  case 2:   
      ... 
      break;  
  default: 
      ... 
} 

goto stmt // no equivalent goto SomeLabel; 
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C vs. Java: Details (cont.)

Java C

for stmt for (int i=0; i<10; i++) 
    statement; 

int i; 
for (i=0; i<10; i++) 
    statement; 

while stmt while (i < 0) 
    statement; 

while (i < 0) 
    statement; 

do-while stmt
do { 
    statement; 
    … 
} while (i < 0) 

do { 
    statement; 
    … 
} while (i < 0); 

continue stmt continue; continue; 

labeled 
continue stmt continue SomeLabel; /* no equivalent */ 

break stmt break; break; 

labeled break 
stmt break SomeLabel; /* no equivalent */ 
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C vs. Java: Details (cont.)

Java C

return stmt return 5; 
return; 

return 5; 
return; 

Compound stmt 
(alias block)

{ 
    statement1; 
    statement2; 
} 

{ 
    statement1; 
    statement2; 
} 

Exceptions throw, try-catch-finally /* no equivalent */ 

Comments /* comment */ 
// another kind 

/* comment */ 

Method / 
function call

f(x, y, z); 
someObject.f(x, y, z); 
SomeClass.f(x, y, z); 

f(x, y, z); 
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Example C Program
#include <stdio.h> 
#include <stdlib.h> 

const double KMETERS_PER_MILE = 1.609; 

int main(void) { 
   int miles; 
   double kmeters; 
   printf("miles: "); 
   if (scanf("%d", &miles) != 1) { 
      fprintf(stderr, "Error: Expect a number.\n"); 
      exit(EXIT_FAILURE); 
   } 
   kmeters = miles * KMETERS_PER_MILE; 
   printf("%d miles is %f kilometers.\n",  
      miles, kmeters); 
   return 0; 
} 
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Summary

•  Course overview
•  Goals

•  Goal 1:  Learn “programming in the large”
•  Goal 2:  Look “under the hood”
•  Goal 2 supports Goal 1
•  Use of C and Linux supports both goals

•  Learning resources
•  Lectures, precepts, programming environment, course listserv, 

textbooks
•  Course Web site:  access via http://www.cs.princeton.edu
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Summary

•  Getting started with C
•  C was designed for system programming

•  Differences in design goals of Java and C explain many 
differences between the languages

•  Knowing C design goals explains many of its eccentricities
•  Knowing Java gives you a head start at learning C

•  C is not object-oriented, but many aspects are similar
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Getting Started

•  Check out course Web site soon
•  Study “Policies” page
•  First assignment is available

•  Establish a reasonable computing environment soon
•  Instructions given in first precept


