
1

1

COS 217: Introduction to
Programming Systems

2

Goals for Todayʼs Class
• Course overview

•  Introductions
• Course goals
• Resources
• Grading
• Policies

• Getting started with C
• C programming language overview

2

3

Introductions
•  Instructor-of-Record

•  Vivek Pai, Ph.D. (Professor)
•  vivek@cs.princeton.edu

•  Preceptors (in alphabetical order)
•  Robert Dondero, Ph.D. (Lead Preceptor)

•  rdondero@cs.princeton.edu
•  Sunha Ahn

•  sahn@princeton.edu
•  Dushyant Arora

•  dushyant@cs.princeton.edu
•  Sasha Koruga

•  skoruga@cs.princeton.edu
•  Meng Zhang

•  mengz@princeton.edu

4

Course Goal 1: “Programming in the Large”

• Goal 1: “Programming in the large”
•  Help you learn how to write large  

computer programs

• Specifically, help you learn how to:
•  Write modular code

•  Hide information
•  Manage resources
•  Handle errors

•  Write portable code
•  Test and debug your code
•  Improve your codeʼs performance (and when to do so)
•  Use tools to support those activities

3

5

Course Goal 2: “Under the Hood”
•  Goal 2: “Look under the hood”

•  Help you learn what happens  
“under the hood” of computer systems

•  Specifically, two downward tours

•  Goal 2 supports Goal 1
•  Reveals many examples of effective abstractions

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

6

Course Goals: Why C?
• Q: Why C instead of Java?
• A: C supports Goal 1 better

•  C is a lower-level language
•  C provides more opportunities to create abstractions

•  C has some flaws
•  Cʼs flaws motivate discussions of software

engineering principles

• A: C supports Goal 2 better
•  C facilitates language levels tour

•  C is closely related to assembly language
•  C facilitates service levels tour

•  Linux is written in C

4

7

Course Goals: Why Linux?
• Q: Why Linux instead of Microsoft Windows?
• A: Linux is good for education and research

•  Linux is open-source and well-specified

• A: Linux is good for programming
•  Linux is a variant of Unix
•  Unix has GNU, a rich open-source programming

environment

• Help you to become a...

8

Course Goals: Summary

Power Programmer!!!

5

9

Resources: Lectures and Precepts

• Lectures
•  Describe concepts at a high level
•  Slides available online at course Web site
•  Stronger influence on exams

• Precepts
•  Support lectures by describing concepts at a lower level
•  Support your work on assignments
•  Builds practically on a subset of information

•  Important: Precepts begin TODAY

10

Resources: Website and Listserv

• Website
•  Access from http://www.cs.princeton.edu

•  Academics → Course Schedule → COS 217

• Piazza
•  http://piazza.com/class#spring2012/cos217/
•  Instructions provided in first precept

6

11

Resources: Books
•  Required book

•  C Programming: A Modern Approach (Second Edition), King,
2008.
•  Covers the C programming language and standard libraries

•  Highly recommended books
•  The Practice of Programming, Kernighan and Pike, 1999.

•  Covers “programming in the large”
•  (Required for COS 333)

•  Computer Systems: A Programmer's Perspective (Second Edition),
Bryant and O'Hallaron, 2010.
•  Covers “under the hood”
•  Some key sections are on electronic reserve
•  First edition is sufficient

•  Programming with GNU Software, Loukides and Oram, 1997.
•  Covers tools

•  All books are on reserve in Engineering Library

12

Resources: Manuals

•  Manuals (for reference only, available online)
•  IA32 Intel Architecture Software Developer's Manual, Volumes 1-3
•  Tool Interface Standard & Executable and Linking Format
•  Using as, the GNU Assembler

•  See also
•  Linux man command

• man is short for “manual”
•  For more help, type man man

7

13

Resources: Programming Environment

Friend Center 016
or 017 Computer

hats.princeton.edu

SSH

Lab TAs

Linux
GNU

• Option 1

Your
Pgm

fedora
fez

14

Resources: Programming Environment

Your PC/Mac/Linux
Computer

SSH

• Option 2
hats.princeton.edu

Linux
GNU
Your
Pgm

fedora
fez

8

15

Resources: Programming Environment
•  Other options

•  Use your own PC/Mac/Linux computer; run GNU tools locally; run
your programs locally

•  Use your own PC/Mac/Linux computer; run a non-GNU
development environment locally; run your programs locally

•  Etc.

•  Notes
•  Other options cannot be used for some assignments (esp. timing

studies)
•  Instructors cannot promise support of other options
•  Strong recommendation: Use Option 1 or 2 for all assignments
•  First precept provides setup instructions

16

Grading
• Seven programming assignments (50%)

•  Working code
•  Clean, readable, maintainable code
•  On time (penalties for late submission)
•  Final assignment counts double (12.5%)

• Exams (40%)
•  Midterm (15%)
•  Final (25%)

• Class participation (10%)
•  Lecture and precept attendance is mandatory

9

17

Programming Assignments
•  Programming assignments

1.  A “de-comment” program
2.  A string module
3.  A symbol table module
4.  IA-32 assembly language programs
5.  A buffer overrun attack
6.  A heap manager module
7.  A Unix shell

•  Key part of the course
•  See course “Schedule” web page for due dates/times
•  First assignment is available now
•  Advice: Start early to allow time for debugging (especially in

the background while you are doing other things!)…

18

Why Debugging is Necessary…

10

19

Policies
Study the course “Policies” web page!
•  Especially the assignment collaboration policies

•  Violation involves trial by Committee on Discipline
•  Typical penalty is suspension from University for 1 academic year

•  Some highlights:
•  Donʼt view anyone elseʼs work during, before, or after the

assignment time period
•  Donʼt allow anyone to view your work during, before, or after the

assignment time period
•  In your assignment “readme” file, acknowledge all resources used

•  Ask your preceptor for clarifications if necessary

20

Course Schedule
•  Very generally…

Weeks Lectures Precepts
1-2 Intro to C (conceptual) Intro to Linux/GNU 

Intro to C (mechanical)
3-6 “Pgmming in the Large” Advanced C
6 Midterm Exam
7 Recess
8-13 “Under the Hood” Assembly Language 

Pgmming Assignments
Reading Period

Final Exam

•  See course “Schedule” web page for details

11

21

Any questions before we start?

22

C vs. Java: History

BCPL B C K&R C ANSI C89
ISO C90 ISO/ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk C++ Java

Not yet popular;
our compiler
supports only
partiallyWe will use

12

23

C vs. Java: Design Goals
•  Java design goals

•  Support object-oriented programming
•  Allow same program to be executed on multiple operating systems
•  Support using computer networks
•  Execute code from remote sources securely
•  Adopt the good parts of other languages (esp. C and C++)

•  Implications for Java
•  Good for application-level programming
•  High-level

•  Virtual machine insulates programmer from underlying assembly
language, machine language, hardware

•  Portability over efficiency
•  Security over efficiency
•  Security over flexibility

24

C vs. Java: Design Goals
•  C design goals

•  Support structured programming
•  Support development of the Unix OS and Unix tools

•  As Unix became popular, so did C

•  Implications for C
•  Good for system-level programming

•  But often used for application-level programming – sometimes
inappropriately

•  Low-level
•  Close to assembly language; close to machine language; close

to hardware
•  Efficiency over portability
•  Efficiency over security
•  Flexibility over security

13

25

C vs. Java: Design Goals

•  Differences in design goals explain many differences
between the languages

•  Cʼs design goal explains many of its eccentricities

•  Weʼll see examples throughout the course

26

C vs. Java: Overview

•  Dennis Ritchie on the nature of C:

•  “C has always been a language that never attempts to tie a
programmer down.”

•  “C has always appealed to systems programmers who like the terse,
concise manner in which powerful expressions can be coded.”

•  “C allowed programmers to (while sacrificing portability) have direct
access to many machine-level features that would otherwise require
the use of assembly language.”

•  “C is quirky, flawed, and an enormous success. While accidents of
history surely helped, it evidently satisfied a need for a system
implementation language efficient enough to displace assembly
language, yet sufficiently abstract and fluent to describe algorithms
and interactions in a wide variety of environments.”

14

27

C vs. Java: Overview (cont.)

•  Bad things you can do in C that you canʼt do in Java
•  Shoot yourself in the foot (safety)
•  Shoot others in the foot (security)
•  Ignore wounds (error handling)

•  Dangerous things you must do in C that you donʼt in Java
•  Explicitly manage memory via malloc() and free()

•  Good things you can do in C, but (more or less) must do in
Java
•  Program using the object-oriented style

•  Good things you canʼt do in C but can do in Java
•  Write completely portable code

28

C vs. Java: Details

•  Remaining slides provide some details
•  Suggestion: Use for future reference

•  Slides covered briefly now, as time allows…

15

29

C vs. Java: Details (cont.)
Java C

Overall 
Program 
Structure

Hello.java:

public class Hello {
 public static void
 main(String[] args) {
 System.out.println(
 "Hello, world");
 }
}

hello.c:

#include <stdio.h>

int main(void) {
 printf("Hello, world\n");
 return 0;
}

Building

% javac Hello.java
% ls
Hello.class
Hello.java
%

% gcc217 hello.c
% ls
a.out
hello.c
%

Running
% java Hello
Hello, world
%

% a.out
Hello, world
%

30

C vs. Java: Details (cont.)

Java C
Character type char // 16-bit unicode char /* 8 bits */

Integral types
byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned) char
(unsigned) short
(unsigned) int
(unsigned) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean /* no equivalent */
/* use integral type */

Generic
pointer type // no equivalent void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

16

31

C vs. Java: Details (cont.)

Java C

Arrays
int [] a = new int [10];
float [][] b =
 new float [5][20];

int a[10];
float b[5][20];

Array bound
checking // run-time check /* no run-time check */

Pointer type // Object reference is an
// implicit pointer

int *p;

Record type
class Mine {
 int x;
 float y;
}

struct Mine {
 int x;
 float y;
}

32

C vs. Java: Details (cont.)

Java C

Strings
String s1 = "Hello";
String s2 = new
 String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops &&, ||, ! &&, ||, !

Relational ops =, !=, >, <, >=, <= =, !=, >, <, >=, <=

Arithmetic
ops +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops >>, <<, >>>, &, |, ^ >>, <<, &, |, ^

Assignment
ops

=, *=, /=, +=, -=, <<=,
>>=, >>>=, =, ^=, |=, %=

=, *=, /=, +=, -=, <<=,
>>=, =, ^=, |=, %=

17

33

C vs. Java: Details (cont.)
Java C

if stmt
if (i < 0)
 statement1;
else
 statement2;

if (i < 0)
 statement1;
else
 statement2;

switch stmt

switch (i) {
 case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

switch (i) {
 case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

goto stmt // no equivalent goto SomeLabel;

34

C vs. Java: Details (cont.)

Java C

for stmt for (int i=0; i<10; i++)
 statement;

int i;
for (i=0; i<10; i++)
 statement;

while stmt while (i < 0)
 statement;

while (i < 0)
 statement;

do-while stmt
do {
 statement;
 …
} while (i < 0)

do {
 statement;
 …
} while (i < 0);

continue stmt continue; continue;

labeled
continue stmt continue SomeLabel; /* no equivalent */

break stmt break; break;

labeled break
stmt break SomeLabel; /* no equivalent */

18

35

C vs. Java: Details (cont.)

Java C

return stmt return 5;
return;

return 5;
return;

Compound stmt
(alias block)

{
 statement1;
 statement2;
}

{
 statement1;
 statement2;
}

Exceptions throw, try-catch-finally /* no equivalent */

Comments /* comment */
// another kind

/* comment */

Method /
function call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

36

Example C Program
#include <stdio.h>
#include <stdlib.h>

const double KMETERS_PER_MILE = 1.609;

int main(void) {
 int miles;
 double kmeters;
 printf("miles: ");
 if (scanf("%d", &miles) != 1) {
 fprintf(stderr, "Error: Expect a number.\n");
 exit(EXIT_FAILURE);
 }
 kmeters = miles * KMETERS_PER_MILE;
 printf("%d miles is %f kilometers.\n",
 miles, kmeters);
 return 0;
}

19

37

Summary

•  Course overview
•  Goals

•  Goal 1: Learn “programming in the large”
•  Goal 2: Look “under the hood”
•  Goal 2 supports Goal 1
•  Use of C and Linux supports both goals

•  Learning resources
•  Lectures, precepts, programming environment, course listserv,

textbooks
•  Course Web site: access via http://www.cs.princeton.edu

38

Summary

•  Getting started with C
•  C was designed for system programming

•  Differences in design goals of Java and C explain many
differences between the languages

•  Knowing C design goals explains many of its eccentricities
•  Knowing Java gives you a head start at learning C

•  C is not object-oriented, but many aspects are similar

20

39

Getting Started

•  Check out course Web site soon
•  Study “Policies” page
•  First assignment is available

•  Establish a reasonable computing environment soon
•  Instructions given in first precept

