# Secrets \& Lies, Knowledge \& Trust. (Modern Cryptography) 

COS 116, Spring 2012 Adam Finkelstein

## Cryptography

|krip 'tägrəfē| noun
the art of writing or solving codes.
Ancient ideas (pre-1976)
$\square$ Complexity-based cryptography (post-1976)

Basic component of Digital World.<br>More than just encryption / secret writing!

## Main themes of today's lecture

- Creating problems can be easier than solving them
- Seeing information vs. making sense of it
- Role of randomness in the above
- Two complete strangers exchange secret information


## Theme 1: Creating problems can be easier than solving them

## Example:

(Aside: This particular problem is trivial for computers!)


Reminiscent of something similar that is hard for current computers?


## Letter scrambling: ancient cryptographic idea

Example 1: "Caesar cipher" (c. 100BC)


Example 2: Cipher used in conspiracy plot involving Queen Mary of Scots, 1587


## Mafia Boss's Messages Deciphered

- "Boss of bosses" Bernardo Provenzano, captured after 40 years
- Sent "pizzini" (little messages on scraps of paper) using variant of Caesar cipher
- "...I met 512151522191212154 and we agreed, that we will see each other after the holidays...,"
- $5=\mathrm{B}, 12=\mathrm{I}, 15=\mathrm{N}$, etc.
"It will keep your kid sister out, but it won't keep the police out." - Bruce Schneier (Cryptographer)


## Letter scrambling (cont.)

- Example 3: Enigma
$\square$ Used by Nazi Germany (1940's)
$\square$ Broken by British (Turing), Polish

$\square$ "Won us the war." - Churchill

Moral: Use of computer necessitates new ideas for encryption.

## Integer factoring

## Easy-to-generate problem

- Generation

Pick two 32-digit prime numbers $p, q$, and multiply them to get $r=p q$

- Factoring problem

Given $r$. find $p$ and $q$

We discussed an algorithm...
Running time?

## Status of factoring

Despite many centuries of work, no efficient algorithms.
Believed to be computationally hard, but remains unproved ("almost-exponential time")

You rely on it every time you use e-commerce (coming up)

Note: If quantum computers ever get built, this may become easy to solve.

- Theme 2:

Seeing information vs. making sense of it

- Theme 3:

Role of randomness.

Simple example that illustrates both: one-time pad ("daily codebook.")


## Random source hypothesis

- Integral to modern cryptography

- We have a source of random bits
- They look completely unpredictable
- Possible sources:

Quantum phenomena, timing between keystrokes, etc.


## One-time pad (modern version)

- Goal: transmit $n$-bit message


Eve

- One-time pad: random sequence of $n$ bits (shared between sender and receiver)


## Using one-time pad

- Encryption:

One-time pad scrambles the message, as follows:
$\square 0$ means "don't flip" the bit in the message
$\square 1$ means "flip" the bit in the message

- Example:

Encryption

| Message | 0110010 |
| :--- | :--- |
| Pad | 1011001 |
| Encrypted | 1101011 |

Decryption (same rule!)

| Encrypted | 1101011 |
| :--- | :--- |
| Pad | 1011001 |
| Message | 0110010 |

## Musings about one-time pad

- Incredibly strong security: encrypted message "looks random" ... equally likely to be encryption of any $n$-bit string

- How would you use one-time pad?
- How can you and Amazon agree on a one-time pad?


## Theme: How perfect strangers can send each other encrypted messages.

Powerful idea: public-key encryption

- Diffie-Hellman-Merkle [1976]

- Rivest, Shamir, Adleman [1977]



## Public-key cryptography



$$
c=\operatorname{Encrypt}\left(m, K_{\text {pub }}\right)
$$

$$
\rightarrow \text { amazon.com }
$$

Message $m$

$$
\begin{aligned}
& \text { Private key } K_{\text {priv }} \\
& \text { (512-bit number, } \\
& \text { known only to } \\
& \text { Amazon.) } \\
& \left.m=\text { Decrypt(c, } K_{\text {priv }}\right)
\end{aligned}
$$

Public key $K_{\text {pub }}$ (512 bit number,
publicly available, e.g.
from Verisign Inc)

- Important: encryption and decryption algorithms are not secret, only private key!


## Public-key encryption at a conceptual level

- "Box that clicks shut, and only Amazon has the key to open it."

amazon.com

- Example: Key exchange [Diffie-Hellman]
$\square$ User generates random string ("one-time pad")
$\square$ Put it in box, ship it to Amazon
$\square$ Amazon opens box, recovers random string


## Public-Key Encryption at a mathematical level (RSA version)

Key generation: Pick random primes p, q.

Random
Source
Hypothesis!

Primes and "modular" math
Let $N=p \times q$
Find $k$ that is not divisible by p, q. ("Pablic Key")
Encryption: $m$ is encrypted as $\mathrm{m}^{\mathrm{k}}(\bmod \mathrm{N})$
Decryption: Symmmetric to Encryption; use "inverse" of $k$ (this is private key)
(don't sweat the details on this!)

## Zero Knowledge Proofs [Goldwasser,

 Micali, Rackoff '85]


Student

prox card

prox card reader

- Desire: Prox card reader should not store "signatures"
- potential security leak
- Just ability to recognize signatures!
- Learn nothing about signature except that it is a signature
"ZK Proof": Everything that the verifier sees in the interaction it could easily have generated itself.


## Illustration: Zero-Knowledge Proof that "Sock A is different from sock B"



- Usual proof: "Look, sock A has a tiny hole and sock B doesn't!"
- ZKP: "OK, why don't you put both socks behind your back. Show me a random one, and I will say whether it is sock A or sock B. Repeat as many times as you like, I will always be right."
- Why does verifier learn "nothing"? (Except that socks are indeed different.)


## COMPUTING

# The security of knowing nothing 

Bernard Chazelle

## 'Zero-knowledge' proofs are all about knowing more, while knowing nothing. When married to cryptographic techniques, they are one avenue being explored towards improving the security of online transactions.

Modern scientists, not unlike medieval monks, keep their knowledge firmly grounded in trust and authority. Unless it is part of their job description to probe such matters, they take it on faith that Genghis Khan defeated the Khwarezmid Empire, that praying mantids moonlight as sexual cannibals, and that man landed on the Moon. There is only so much a person can check: trust is the oxygen of the scientific community.

Unless, of course, it has to do with online shopping. Computer transactions tend to bring out the paranoid in all of us. By all accounts, that is a healthy reaction. We might be putting our faith in online auctions, e-voting, computer authentication and privacy-preserving data mining, but - with very different aims in mind - so are the bad guys. More than a decade ago, Oded Goldreich, Silvio Micali and Avi Wigderson showed how to make virtually any cryptographic task secure ${ }^{1}$. But unfortunately, their
otherwise remarkable scheme breaks down in 'concurrent' settings, which is another way of saying that it fails where it really shouldn't namely, on the Internet. Work by Boaz Barak and Amit Sahai in recent years, however, offers a way out of this bind ${ }^{2}$.
The secret to secure online transactions is the mastery of 'zero knowledge': the art of proving something without giving anything else away. Can I convince you that I am the better chess player without ever playing a game, that I am younger than you without divulging my age, or that I can prove a hard theorem without revealing my hand about the proof? Can a referendum take place on the Internet that leaks no information about voters' preferences? The concept of zero knowledge ${ }^{3}$, introduced in the mid-1980s, helps us to formalize these questions.
To illustrate the principle, let us say Petra (the prover) and Virgil (the verifier) are shown
the subway map of a large metropolitan area (Fig. 1). Blessed with superior mental powers, Petra claims to see right away that it is possible to visit every stop exactly once without leaving the subway system, thus forming what is called a hamiltonian path. Poor Virgil sees nothing of the sort - the reason being his inability to solve conundrums like the one at hand, known as NP-complete problems.
Such problems have solutions that can be verified in a number of steps proportional to a polynomial in the size of the input data. Whether all NP-complete problems can actually also be solved within that same time is an open question, arguably one of the most pressing in all science. The answer is believed to be no: this is why Virgil badly needs Petra's help if he is to be convinced of her claim.
A zero-knowledge proof takes the form of a question-and-answer session between Petra and Virgil that will leave Virgil convinced of the


## (From Lecture 1): Public closed-ballot elections

- Hold an election in this room
$\square$ Everyone can speak publicly (i.e. no computers, email, etc.)
$\square$ At the end everyone must agree on who won and by what margin

$\square$ No one should know which way anyone else voted
- Is this possible?
$\square$ Yes! (A. Yao, Princeton)
"Privacy-preserving Computations"
(Important research area)

