What is the computational cost of automating brilliance or serendipity? (Computational complexity \& P vs NP)

COS 116, Spring 2012 Adam Finkelstein

Combination lock

Why is it secure?
(Assume it cannot be picked)

Ans: Combination has 3 numbers 0-39...
thief must try $40^{3}=64,000$ combinations

Boolean satisfiability

$$
(A+B+C) \cdot(\bar{D}+F+G) \cdot(\bar{A}+G+K) \cdot(\bar{B}+P+Z) \cdot(C+\bar{U}+\bar{X})
$$

■ Does it have a satisfying assignment?
■ What if instead we had 100 variables?
■ 1000 variables?

- How long will it take to determine the assignment?

Exponential running time

2^{n} time to solve problems of "size" n
Increase n by $1 \rightarrow$ running time doubles!
Main fact to remember:
For case of $n=300$,
$2^{n}>$ number of atoms in the visible universe.

Discussion

Is there an inherent difference between being creative / brilliant
and
being able to appreciate creativity / brilliance?

What is a computational analogue of this phenomenon?

A Proposal

Brilliance $=$ Ability to find "needle in a haystack"

Beethoven found
"satisfying assignments"
to our neural circuits
for music appreciation

Comments??

There are many computational problems where finding a solution is equivalent to "finding a needle in a haystack"....

CLIQUE Problem

- CLIQUE: Group of students, every pair of whom are friends
- In this social network, is there a CLIQUE with 5 or more students?
- What is a good algorithm for detecting cliques?
- How does efficiency depend on network size and desired clique size?

Rumor mill problem

- Social network at PU
- Each node represents a student
- Two nodes connected by edge if those students are friends
- Samantha starts a rumor
- Will it reach Thomas?
- Suggest an algorithm
- How does running time depend on network size?
- Internet servers solve this problem all the time (last lecture).

Exhaustive Search / Combinatorial Explosion

Naïve algorithms for many "needle in a haystack" tasks involve checking all possible answers \rightarrow exponential running time.

- Ubiquitous in the computational universe
- Can we design smarter algorithms (as for "Rumor Mill")? Say, n^{2} running time.

Harmonious Dorm Floor

Given: Social network involving n students.
Edges correspond to pairs of students who don't get along.

Decide if there is a set of k students who would make a harmonious group (everybody gets along).

Just the Clique problem in disguise!

Traveling Salesman Problem (aka UPS Truck problem)

- Input: n points and all pairwise inter-point distances, and a distance k
- Decide: is there a path that visits all the points ("salesman tour") whose total length is at most k ?

Finals scheduling

■ Input: n students, k classes, enrollment lists, m time slots in which to schedule finals

- Define "conflict": a student is in two classes that have finals in the same time slot
- Decide:

If schedule with at most 100 conflicts exists?

The P vs NP Question

- P: problems for which solutions can be found in polynomial time ($n n^{c}$ where c is a fixed integer and n is "input size"). Example: Rumor Mill
- NP: problems where a good solution can be checked in n^{c} time. Examples: Boolean Satisfiability, Traveling Salesman, Clique, Finals Scheduling
- Question: Is P = NP?
"Can we automate brilliance?"
(Note: Choice of computational model ---Turing-Post, pseudocode, C++ etc. --- irrelevant.)

NP-complete Problems

Problems in NP that are "the hardest"
 \square lf they are in P then so is every NP problem.

Examples: Boolean Satisfiability, Traveling Salesman, Clique,
Finals Scheduling, 1000s of others

How could we possibly prove these problems are "the hardest"?

"Reduction"

"If you give me a place to stand, I will move the earth."

- Archimedes (~ 250BC)

"If you give me a polynomial-time algorithm for Boolean Satisfiability, I will give you a polynomial-time algorithm for every NP problem." --- Cook, Levin (1971)
"Every NP problem is a satisfiability problem in disguise."

Dealing with NP-complete problems

1. Heuristics (algorithms that produce reasonable solutions in practice)
2. Approximation algorithms (compute provably near-optimal solutions)

Computational Complexity Theory:

 Study of Computationally Difficult problems.A new lens on the world?

- Study matter \rightarrow look at mass, charge, etc.
- Study processes \rightarrow look at computational difficulty

Example 1: Economics

General equilibrium theory:

- Input: n agents, each has some initial endowment (goods, money, etc.) and preference function
- General equilibrium: system of prices such that
 for every good, demand = supply.
- Equilibrium exists [Arrow-Debreu, 1954]. Economists assume markets find it ("invisible hand")
- But, no known efficient algorithm to compute it. How does the market compute it?

Example 2: Factoring problem

Given a number n, find two numbers p, q (neither of which is 1) such that $n=p \times q$.

Any suggestions how to solve it?
Fact: This problem is believed to be hard. It is the basis of much of cryptography. (More next time.)

Example 3: Quantum Computation

Peter Shor

- Central tenet of quantum mechanics: when a particle goes from A to B, it takes all possible paths all at the same time
- [Shor'97] Can use quantum behavior to efficiently factor integers (and break cryptosystems!)
- Can quantum computers be built, or is quantum mechanics not a correct description of the world?

Example 4: Artificial Intelligence

What is computational complexity of language recognition?

Chess playing?
Etc. etc.

Potential way to show the brain is not a computer: Show it routinely solves some problem that provably takes exponential time on computers.

Why is P vs NP a Million-dollar open problem?

- If $P=N P$ then Brilliance becomes routine (best schedule, best route, best design, best math proof, etc...)
- If $P \neq N P$ then we know something new and fundamental not just about computers but about the world (akin to "Nothing travels faster than light").

Next time: Cryptography (practical use of computational complexity)

