The science that drives modern computers.

COS 116, Spring 2012 Adam Finkelstein

Changing face of manufacturing

1936

"Modern Times"

Late $20^{\text {th }}$ century

Silicon wafer fabrication

$20^{\text {th }}$ century science and IT:

 a match made in heaven?"These are the days of miracles and wonders." - Paul Simon, Graceland

Main theme in this lecture:
Scientific Advances \rightarrow Ability to control matter precisely \rightarrow Amazing products/computers

Example of precise control of matter: Lasers

- Quantum mechanics (wave-particle duality, quantization of energy, etc.)

- Ability to create light of a single frequency ("laser")

Why lasers are so useful: Accurate focusing

- White light

- Different colors focus at different points "smudge"
- Laser

- Focus at single point

Silicon Chip manufacturing

"A picture is worth a billion gates."

Fact: Modern chips are manufactured using a process similar to photography

Timeline

Vacuum Tube Triode (1908)

Transistor 1947
(silicon, germanium)

Intel Itanium (Tukwila) 2008: 2 billion transistors

Moore’ s Law

 Technology advancesso that number of
gates per square inch
doubles every 18 months.

Implementation of a gate in a modern chip

- Semiconductor: not as good a conductor as metals, not as bad as wood
\square Example: silicon
- Doped semiconductor: semiconductor with some (controlled) impurities: p-type, n-type
- Switch: p-n junction

Example: an AND gate

Chip Fabrication

Grow silicon ingots

Cut wafers and polish

Create mask

Coat with chemicals that remove parts unexposed to light

Coat wafer with light sensitive chemicals and project mask onto it

Aside: Lasik eye correction

 Uses laser invented for chip fabrication

Chip Packaging

- Inside
- Outside

Life cycle of a microprocessor

Fact: Less than 1\% of microprocessors sold are used in computers

Inside an iPod Remote

Why so few new CPU' s?

Cost of new design: $\$ 8$ billion
\square Profit: $\$ 100$ I chip

Need to sell 80 million to break even

Engineering tradeoffs

Half the size!

- Can run at twice the clock speed! (Why?)
- But: higher clock speeds \rightarrow much more heat!

Even more precise control of matter

Nanotechnology: manufacture of objects (machines, robots, etc.) at the atomic or molecular level (1-100 nanometers)

"nanogear"

Biocomputing: Implementing computers via interactions of biological molecules.

Another example of control of matter: the changing data cable

■ Serial cable: 115 kb/s

■ USB cable: $480 \mathrm{Mb} / \mathrm{s}$ (USB 2.0)

■ Fiber optic cable: $40 \mathrm{~Gb} / \mathrm{s}$

Total Internal Reflection

Porro Prism

How optical fibers work

■ Glass fiber: 10-40 billion bits/s

"Total internal reflection"

Wave Division Multiplexing (WDM)

Multiple (100 or so) data streams enter
Multiple data streams exit

- Transmission rates of trillion ("Tera") bits/ s

Thoughts about the $20^{\text {th }}$ century

- What factors (historical, political, social) gave rise to this knowledge explosion?
- Will it continue in the future?

Are faster chips the answer to all problems in computing?

An Answer:
No! Halting problem is undecidable!

