Memory; Sequential \&

 Clocked Circuits; Finite State MachinesCOS 116, Spring 2012 Adam Finkelstein

Recap: Boolean Logic

Boolean Expression

$$
\mathrm{E}=\mathrm{S} \text { AND } \overline{\mathrm{D}}
$$

Boolean Circuit

Truth table:
Value of E for every possible D, S.
TRUE=1; FALSE= 0.

D	S	E
0	0	0
0	1	1
1	0	0
1	1	0

Truth table has 2^{k} rows if the number of variables is k

Boole's reworking of Clarke's "proof" of existence of God (see handout - after midterm)

- General idea: Try to prove that Boolean expressions $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ cannot simultaneously be true
- Method: Show $E_{1} \cdot E_{2} \cdot \ldots \cdot E_{k}=0$
- Discussion for after Break: What exactly does Clarke's "proof" prove? How convincing is such a proof to you?

Also: Do Google search for "Proof of God's Existence."

Circuit for binary addition?

25	11001
+29	11101
54	110110

Want to design a circuit to add any two N-bit integers.

Q: Is the truth table method useful for $\mathrm{N}=64$?

Modular design for N -bit adder

$$
\begin{array}{llllll}
& \begin{array}{llllll}
c_{\mathrm{N}-1} & c_{\mathrm{N}-2} & \ldots & c_{1} & c_{0} \\
a_{\mathrm{N}-1} & a_{\mathrm{N}-2} & \ldots & a_{1} & a_{0} \\
b_{\mathrm{N}-1} & b_{\mathrm{N}-2} & \ldots & b_{1} & b_{0}
\end{array} \\
\hline
\end{array}
$$

Suffices to use N 1-bit adders!

Modular design

Have small number of basic components.

Put them together to achieve desired functionality

Basic principle of modern industrial design; recurring theme in next few lectures.

1-bit adder

Do yourself: Write truth table, circuit.

A Full Adder (see logic reading)

Timing Diagram

NOT gate

Memory

Rest of this lecture: How boolean circuits have "memory".

What do you understand by 'memory'...?

How can you tell that a 1-year old child has it?

Behaviorist's answer: Child's actions depend upon past events.

Combinational circuit

- Boolean gates connected by wires

Wires: transmit voltage
(and hence value)

- Important: no cycles allowed

Today: Circuits with loops; aka "Sequential Circuits"

Matt likes Sue but he doesn' t like changing his mind

- Represent with a circuit: Matt will go to the party if Sue goes or if he already wanted to go

Is this well-behaved?!?

Sequential Circuits

- Circuits with AND, OR and NOT gates.
- Cycles are allowed (ie outputs can feed back into inputs)
- Can exhibit "memory".
- Sometimes may have "undefined" values

Enter Rita

- Matt will go to the party if Sue goes OR if the following holds: if Rita does not go and he already wanted to go.

$\mathrm{R}, \mathrm{S}:$ "control"
inputs

What combination of R, S changes M ?

R-S Flip-Flop

- M becomes 1 if Set is turned on
- M becomes 0 if Reset is turned on
- Otherwise (if both are 0), M just remembers its value

A more convenient form of memory

No "undefined" outputs ever!

- If Write $=0, \mathrm{M}$ just keeps its value. (It ignores D.)
- If Write $=1$, then M becomes set to D

Fact: "Data Flip-Flop" (or "D flip flop") can be created using R-S flip flops!

Register with 4 bits of memory

What controls the "Write" signal?

- Often, the system clock!
- "clock" = device that sends out a fluctuating voltage signal that looks like this

"Computer speed" often refers to the clock frequency (e.g. 2.4GHz)

The "symphony" inside a computer

Clock

Clocked Sequential Circuit (aka
Synchronous
Memory
Circuits)

Clocked Sequential Circuits

Synchronous Sequential Circuit

(aka Clocked Sequential Circuit)

Shorthand

Clock Speeds

1974	Intel 8080	2 MHz (Mega $=$ Million $)$
1981	Original IBM PC	4.77 MHz
1993	Intel Pentium	66 MHz
$2057-94$		

What limits clock speed?

Delays in combinational logic (remember the adder) During 1 clock cycle of Pentium 4, light travels: 4 inches

Next lecture....

Finite State Machines

Example: State diagram for automatic door at grocery store

No Person Detected

