Memory; Sequential & Clocked Circuits; Finite State Machines

COS 116, Spring 2012 Adam Finkelstein

Recap: Boolean Logic

Boolean Expression

 $E = S AND \overline{D}$

Boolean Circuit

Truth table: Value of E for every possible D, S. TRUE=1; FALSE= 0.

Truth table has 2^k rows if the number of variables is k

Boole's reworking of Clarke's "proof" of existence of God (see handout – after midterm)

- General idea: Try to prove that Boolean expressions
 E₁, E₂, ..., E_k cannot simultaneously be true
- <u>Method</u>: Show $E_1 \cdot E_2 \cdot \ldots \cdot E_k = 0$
- Discussion for after Break: What exactly does Clarke's "proof" prove? How convincing is such a proof to you?

Also: Do Google search for "Proof of God's Existence."

Circuit for binary addition?

25	11001
+ 29	11101
54	110110

Want to design a circuit to add any two *N*-bit integers.

Q: Is the truth table method useful for N=64?

Modular design for N-bit adder

	\mathbf{C}_{N-1} \mathbf{C}_{N-2}	\dots \mathbf{C}_1 \mathbf{C}_0	Carry bits
	$\mathbf{a}_{N-1} \mathbf{a}_{N-2}$	\dots \mathbf{a}_1 \mathbf{a}_0	
+	\mathbf{b}_{N-1} \mathbf{b}_{N-2}	$\dots \mathbf{b_1} \mathbf{b_0}$	
-			-
s_{N}	\mathbf{s}_{N-1} \mathbf{s}_{N-2}	\dots \mathbf{s}_1 \mathbf{s}_0	
(;		le it e el el e ve l	

Suffices to use *N* 1-bit adders!

Modular design

Have small number of basic components.

Put them together to achieve desired functionality

Basic principle of modern industrial design; recurring theme in next few lectures.

1-bit adder

Do yourself: Write truth table, circuit.

A Full Adder (see logic reading)

Memory

Rest of this lecture: How boolean circuits have "memory".

What do you understand by 'memory'...?

How can you tell that a 1-year old child has it?

Behaviorist's answer: Child's actions depend upon past events.

Combinational circuit

Boolean gates connected by wires

Wires: transmit voltage (and hence value)

Important: no cycles allowed

Today: Circuits with loops; aka "Sequential Circuits"

Matt likes Sue but he doesn't like changing his mind

 Represent with a circuit: Matt will go to the party if Sue goes or if he already wanted to go

Is this well-behaved?!?

Sequential Circuits

- Circuits with AND, OR and NOT gates.
- Cycles *are* allowed (ie outputs can feed back into inputs)
- Can exhibit "memory".
- Sometimes may have "undefined" values

Enter Rita

 Matt will go to the party if Sue goes OR if the following holds: if Rita does not go and he already wanted to go.

- M becomes 1 if Set is turned on
- M becomes 0 if Reset is turned on
- Otherwise (if both are 0), M just remembers its value

A more convenient form of memory

- If Write = 0, M just keeps its value. (It ignores D.)
- If Write = 1, then M becomes set to D

Fact: "Data Flip-Flop" (or "D flip flop") can be created using R-S flip flops!

Register with 4 bits of memory

What controls the "Write" signal?

- Often, the system clock!
- "clock" = device that sends out a fluctuating voltage signal that looks like this

"Computer speed" often refers to the clock frequency (e.g. 2.4GHz)

The "symphony" inside a computer

Clocked Sequential Circuits

Synchronous Sequential Circuit

(aka Clocked Sequential Circuit)

Clock Speeds

1974	Intel 8080	2 MHz (Mega = Million)
1981	Original IBM PC	4.77 MHz
1993	Intel Pentium	66 MHz
2005	Pentium 4	3.4 GHz (Giga = Billion)

Heinrich Hertz 1857-94

Delays in combinational logic (remember the adder) During 1 clock cycle of Pentium 4, light travels: **4 inches**

Next lecture....

Finite State Machines

Example: State diagram for automatic door at grocery store

