
“It ain’t no good if it ain’t
snappy enough.”
(Efficient Computations)

COS 116, Spring 2012
Adam Finkelstein

Today’s focus: efficiency in
computation

“If it is worth doing, it is worth doing well, and fast.”

Recall: our model of “computation”: pseudocode

Question:
How do we measure the
“speed” of an algorithm?

  Ideally, should be independent of:

 machine
 technology

“Running time” of an algorithm

  Definition: the number of “elementary
operations” performed by the algorithm

  Elementary operations: +, -, *, /, assignment,

evaluation of conditionals

(discussed also in pseudocode handout)

 “Speed” of computer: number of elementary operations
 it can perform per second (Simplified definition)

 Do not consider this in “running time” of algorithm;
 technology-dependent.

Example: Find Min
  n items, stored in array A
  Variables are i, best
  best ← 1
  Do for i = 2 to n

 {
 if (A[i] < A[best]) then
 { best ← i }
 }

Example: Find Min
  n items, stored in array A
  Variables are i, best
  best ← 1
  Do for i = 2 to n

 {
 if (A[i] < A[best]) then
 { best ← i }
 }

  How many operations executed before the loop?

  A: 0 B: 1 C: 2 D: 3

Example: Find Min
  n items, stored in array A
  Variables are i, best
  best ← 1
  Do for i = 2 to n

 {
 if (A[i] < A[best]) then
 { best ← i }
 }

  How many operations per iteration of the loop?

  A: 0 B: 1 C: 2 D: 3

Example: Find Min
  n items, stored in array A
  Variables are i, best
  best ← 1
  Do for i = 2 to n

 {
 if (A[i] < A[best]) then
 { best ← i }
 }

  How many times does the loop run?

  A: n B: n+1 C: n-1 D: 2n “iterations”

Example: Find Min
  n items, stored in array A
  Variables are i, best
  best ← 1
  Do for i = 2 to n

 {
 if (A[i] < A[best]) then
 { best ← i }
 }

Uses at most 2(n – 1) + 1 operations
Initialization Number of iterations

1 assignment & 1 comparison
= 2 operations per loop iteration

} (roughly = 2n)

Efficiency of Selection Sort
Do for i = 1 to n – 1
{

 Find cheapest bottle among those numbered i to n

 Swap that bottle and the i’th bottle.
}

  For the i’th round, takes at most 2(n – i) + 3
  To figure out running time, need to figure out how to sum

 (n – i) for i = 1 to n – 1
…and then double the result.

About 2(n – i) steps

3 steps

Gauss’s trick : Sum of (n – i) for i = 1 to n – 1
 S = 1 + 2 + … + (n – 2) + (n – 1)

+ S = (n – 1) + (n – 2) + … + 2 + 1

 2S = n + n + … + n + n

2S = n(n – 1)

  So total time for selection sort is

 ≤ n(n – 1) + 3n

n – 1 times

Discussion
Time

“20 Questions”:
I have a number between 1 and a million in mind.
Guess it by asking me yes/no questions,
and keep the number of questions small.

 Question 1: “Is the number bigger than half a million?” No

Question 2: “Is the number bigger than a quarter million?”

Strategy: Each question halves the range of possible answers.

No

Pseudocode: Guessing number from1 to n
Lower ← 1
Upper ← n
Found ← 0
Do while (Found=0)
 {
 Guess ←Round((Lower + Upper)/2)
 If (Guess = True Number)

 {
 Found ← 1
 Print(Guess)
 }

 If (Guess < True Number)
 {
 Lower ← Guess
 }

 else
 {
 Upper← Guess
 }

}

Binary
Search

How many times does
the loop run??

 Brief detour: Logarithms (CS view)

  log2 n = K means 2K-1 < n ≤ 2K

  In words: K is the number of times you need
to divide n by 2 in order to get a number ≤ 1

John Napier 16 1024 1048576 8388608

 log2 n

4 10 20 23

n

Running times encountered in
this lecture

n= 8 n= 1024 n= 1048576 n=8388608

log2 n 3 10 20 23

n 8 1024 1048576 8388608

n2 64 1048576 1099511627776 70368744177664

Efficiency really makes a difference!

“There are only 10 types of people in the world –
those who know binary and those who don’t.”

Next….

Binary search and binary
representation of numbers
  Say we know 0 ≤ number < 2K

Is 2K / 2 ≤ number < 2K?

No Yes

Is 2K / 4 ≤ number < 2K / 2?

No Yes

Is 2K × 3/8 ≤ number < 2K / 2?

No Yes

… …

0 2K

Binary representations (cont’d)
  In general, each number can be uniquely identified by a sequence of

yes/no answers to these questions.
  Correspond to paths down this “tree”:

Is 2K / 2 ≤ number < 2K?
No Yes

Is 2K / 4 ≤ number < 2K / 2?

No Yes

Is 2K / 8 ≤ number < 2K / 4?

No Yes

… …

Is 2K × 3/8 ≤ number < 2K / 2?

No Yes

… …

…

Binary representation of n
(the more standard definition)

 n = 2k bk + 2k-1 bk-1 + … + 2 b2 + b1

where the b’s are either 0 or 1)

The binary representation of n is:
 ⎣n⎦2 = bk bk – 1 … b2 b1

Efficiency of Effort:
A lens on the world

  QWERTY keyboard
  “UPS Truck Driver’s Problem” (a.k.a.

Traveling Salesman Problem or TSP)
  CAPTCHA’s
  Quantum computing

[Jim Loy]

Can n particles do 2n “operations” in a single step?
Or is Quantum Mechanics not quite correct?

SIAM J.
Computing
26(5) 1997

Computational efficiency has a bearing on physical theories.

