"It ain't no good if it ain't snappy enough." (Efficient Computations)

COS 116, Spring 2012 Adam Finkelstein

Today' s focus: efficiency in computation

"If it is worth doing, it is worth doing well, and fast."

Recall: our model of "computation": pseudocode

Question: How do we measure the "speed" of an algorithm?

■ Ideally, should be independent of:
\square machine
\square technology

"Running time" of an algorithm

- Definition: the number of "elementary operations" performed by the algorithm

■ Elementary operations: +, -, *, /, assignment, evaluation of conditionals
(discussed also in pseudocode handout)
"Speed" of computer: number of elementary operations
it can perform per second (Simplified definition)
\square Do not consider this in "running time" of algorithm; technology-dependent.

Example: Find Min

- n items, stored in array A
- Variables are i, best
- best $\leftarrow 1$
- Do for $i=2$ to n
\{
if $(A[i]<A[b e s f])$ then
$\{$ best $\leftarrow i\}$
\}

Example: Find Min

- n items, stored in array A
- Variables are i, best
- best $\leftarrow 1$
- Do for $i=2$ to n
\{
if $(A[i]<A[b e s t])$ then
$\{$ best $\leftarrow i$ \}
\}
- How many operations executed before the loop?
$\square \mathrm{A}: 0 \mathrm{~B}: 1 \mathrm{C}: 2 \mathrm{D}: 3$

Example: Find Min

- n items, stored in array A
- Variables are i, best
- best $\leftarrow 1$
- Do for $i=2$ to n
\{
if $(A[i]<A[b e s f])$ then
$\{$ best $\leftarrow i\}$
\}
- How many operations per iteration of the loop?
$\square \mathrm{A}: 0$ B: 1 C: $2 \mathrm{D}: 3$

Example: Find Min

- n items, stored in array A
- Variables are i, best
- best $\leftarrow 1$
- Do for $i=2$ to n
\{
if $(A[i]<A[b e s f])$ then
$\{$ best $\leftarrow i$ \}
\}
- How many times does the loop run?
$\square A: n \quad B: n+1 \quad C: n-1 \quad D: 2 n$

Example: Find Min

- n items, stored in array A
- Variables are i, best
- best $\leftarrow 1$
- Do for $i=2$ to n
\{
if $(A[i]<A[b e s f])$ then
$\{$ best $\leftarrow i\}$
\}

1 assignment \& 1 comparison
$\downarrow=2$ operations per loop iteration
Uses at most $2(n-1)+1$ operations (roughly $=2 n$)
Number of iterations

Efficiency of Selection Sort

Do for $i=1$ to $n-1$
\{
Find cheapest bottle among those numbered i to n

Swap that bottle and the i th bottle.
About 2($n-i$) steps
\} 3 steps

- For the i ' th round, takes at most $2(n-i)+3$
- To figure out running time, need to figure out how to sum

$$
(n-i) \text { for } i=1 \text { to } n-1
$$

...and then double the result.

Gauss's trick: Sum of $(n-i)$ for $i=1$ to $n-1$

$$
\begin{aligned}
S & =1+2+\ldots+(n-2)+(n-1) \\
+S & =(n-1)+(n-2) \\
& +\ldots+2+1 \\
2 S & =n+n+\ldots+n+n
\end{aligned}
$$

$$
n-1 \text { times }
$$

$$
2 S=n(n-1)
$$

■ So total time for selection sort is

$$
\leq n(n-1)+3 n
$$

Discussion Time

"20 Questions":

I have a number between 1 and a million in mind. Guess it by asking me yes/no questions, and keep the number of questions small.

Question 1: "Is the number bigger than half a million?" No
Question 2: "Is the number bigger than a quarter million?" No
Strategy: Each question halves the range of possible answers.

Pseudocode: Guessing number from1 to n

```
Lower }\leftarrow
Upper }\leftarrow\textrm{n
Found }\leftarrow
Do while (Found=0)
{
    Guess \leftarrowRound((Lower + Upper)/2 )
    If (Guess = True Number)
    {
    Found }\leftarrow
    Print(Guess)
    }
    If (Guess < True Number)
        { Lower }\leftarrow\mathrm{ Guess 
    else
    {
    Upper}\leftarrow\mathrm{ Guess
    }
}
```


Brief detour: Logarithms (CS view)

- $\log _{2} n=K$ means $2^{K-1}<n \leq 2^{K}$
- In words: K is the number of times you need to divide n by 2 in order to get a number ≤ 1

n	16	1024	1048576	8388608
$\log _{2} n$	4	10	20	23

John Napier

Running times encountered in this lecture

	$\mathrm{n}=8$	$\mathrm{n}=1024$	$\mathrm{n}=1048576$	$\mathrm{n}=8388608$
$\log _{2} n$	3	10	20	23
n	8	1024	1048576	8388608
n^{2}	64	1048576	1099511627776	70368744177664

Efficiency really makes a difference!

Next....

"There are only 10 types of people in the world those who know binary and those who don't."

Binary search and binary representation of numbers

- Say we know $0 \leq$ number $<2^{K}$

Is $2^{K} / 4 \leq$ number $<2^{K} / 2 ?$
No 1

Is $2^{K} \times 3 / 8 \leq$ number $<2^{K} / 2 ?$

Binary representations (cont' d)

- In general, each number can be uniquely identified by a sequence of yes/no answers to these questions.
- Correspond to paths down this "tree":

$$
\text { Is } 2^{K} / 2 \leq \text { number }<2^{K} ?
$$

No /

Is $2^{k} / 4 \leq$ number $<2^{k} / 2 ?$
No $/ \quad Y e s$

Is $2^{K} / 8 \leq$ number $<2^{K} / 4$?

Is $2^{k} \times 3 / 8 \leq$ number $<2^{k} / 2$?

Binary representation of n

 (the more standard definition)$$
n=2^{k} b_{k}+2^{k-1} b_{k-1}+\ldots+2 b_{2}+b_{1}
$$

where the b^{\prime} s are either 0 or 1)
The binary representation of n is:

$$
\lfloor n\rfloor_{2}=b_{k} b_{k-1} \ldots b_{2} b_{1}
$$

Efficiency of Effort: A lens on the world

- QWERTY keyboard

■ "UPS Truck Driver’ s Problem" (a.k.a.
 Traveling Salesman Problem or TSP)

- CAPTCHA's
- Quantum computing

Can't read the text? Try another.
Text in the bor: \square

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantmm Computer*

Peter W. Shor ${ }^{\dagger}$

Abstract

SIAM J. Computing 26(5) 1997
intager hater facturad.

Can n particles do 2^{n} "operations" in a single step? Or is Quantum Mechanics not quite correct?
Computational efficiency has a bearing on physical theories.

