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Today’s focus: efficiency in 
computation 

“If it is worth doing, it is worth doing well, and fast.” 

Recall: our model of “computation”: pseudocode 



Question:  
How do we measure the  
“speed” of an algorithm? 

 
  Ideally, should be independent of: 

 machine 
 technology 



“Running time” of an algorithm 

  Definition: the number of “elementary  
operations” performed by the algorithm 

 
  Elementary operations: +, -, *, /, assignment, 

evaluation of conditionals 
 
(discussed also in pseudocode handout) 

 “Speed” of computer: number of elementary operations 
 it can perform per second (Simplified definition) 

 Do not consider this in “running time” of algorithm;  
 technology-dependent. 



Example: Find Min 
  n items, stored in array A 
  Variables are i, best 
  best ← 1 
  Do for i = 2 to n 

 { 
  if (A[ i ] < A[best]) then 
  { best ← i } 
 } 

 



Example: Find Min 
  n items, stored in array A 
  Variables are i, best 
  best ← 1 
  Do for i = 2 to n  

 { 
  if (A[ i ] < A[best]) then 
  { best ← i } 
 } 

 
  How many operations executed before the loop? 

  A: 0   B: 1   C: 2   D: 3   



Example: Find Min 
  n items, stored in array A 
  Variables are i, best 
  best ← 1 
  Do for i = 2 to n  

 { 
  if (A[ i ] < A[best]) then 
  { best ← i } 
 } 

 
  How many operations per iteration of the loop? 

  A: 0   B: 1   C: 2   D: 3   



Example: Find Min 
  n items, stored in array A 
  Variables are i, best 
  best ← 1 
  Do for i = 2 to n  

 { 
  if (A[ i ] < A[best]) then 
  { best ← i } 
 } 

 
  How many times does the loop run? 

  A:  n   B: n+1   C: n-1   D: 2n   “iterations” 



Example: Find Min 
  n items, stored in array A 
  Variables are i, best 
  best ← 1 
  Do for i = 2 to n  

 { 
  if (A[ i ] < A[best]) then 
  { best ← i } 
 } 

 

Uses at most 2(n – 1) + 1 operations 
Initialization Number of iterations 

1 assignment & 1 comparison 
= 2 operations per loop iteration 

} (roughly = 2n) 



Efficiency of Selection Sort 
Do for i = 1 to  n – 1  
{ 

 Find cheapest bottle among those numbered i to n 
 

 Swap that bottle and the i’th bottle. 
} 

  For the i’th round, takes at most 2(n – i ) + 3 
  To figure out running time, need to figure out how to sum   

      (n – i) for i = 1 to n – 1     
…and then double the result. 

About 2(n – i) steps 

3 steps 



Gauss’s trick : Sum of (n – i) for i = 1 to n – 1 
  S =    1      +      2     +  … + (n – 2) + (n – 1)  

+ S = (n – 1) + (n – 2)  + … +     2     +     1 

 2S =    n    +      n      + … +     n     +     n 
 
 

  
2S = n(n – 1) 

 
  So total time for selection sort is  

  ≤ n(n – 1) + 3n 

n – 1 times 



Discussion  
Time 

“20 Questions”:  
I have a number between 1 and a million in mind.  
Guess it by asking me yes/no questions,  
and keep the number of questions small. 

 Question 1: “Is the number bigger than half a million?” No 

Question 2: “Is the number bigger than a quarter million?” 

Strategy: Each question halves the range of possible answers. 

No 



Pseudocode: Guessing number from1 to n 
Lower ← 1  
Upper ← n  
Found ← 0 
Do while (Found=0)  
 { 
   Guess ←Round( (Lower + Upper)/2 ) 
   If (Guess = True Number) 

 { 
 Found ← 1  
 Print(Guess) 
 } 

    If (Guess < True Number) 
 {  
  Lower ← Guess 
 } 

    else  
 { 
 Upper← Guess 
 } 

}      

Binary 
Search 

How many times does 
the loop run?? 



 Brief detour: Logarithms (CS view) 

  log2 n = K means 2K-1 < n ≤ 2K 

  In words: K is the number of times you need 
to divide n by 2 in order to get a number ≤ 1 

John Napier 16 1024 1048576 8388608 

 
  log2 n 

4 10 20 23 

n 



Running times encountered in 
this lecture 

n= 8 n= 1024 n= 1048576 n=8388608 

log2 n 3 10 20 23 

n 8 1024 1048576 8388608 

n2 64 1048576 1099511627776 70368744177664 

Efficiency really makes a difference! 



“There are only 10 types of people in the world –  
those who know binary and those who don’t.” 

Next…. 



Binary search and binary 
representation of numbers 
  Say we know 0 ≤ number < 2K 

Is 2K / 2 ≤  number <  2K? 

No Yes 

Is 2K / 4 ≤ number < 2K / 2? 

No Yes 

Is 2K × 3/8 ≤ number < 2K / 2? 

No Yes 

…  …  

0 2K 



Binary representations (cont’d) 
  In general, each number can be uniquely identified by a sequence of 

yes/no answers to these questions. 
  Correspond to paths down this “tree”: 

Is 2K / 2 ≤ number < 2K? 
No Yes 

Is 2K / 4 ≤ number < 2K / 2? 

No Yes 

Is 2K / 8 ≤ number < 2K / 4? 

No Yes 

…  …  

Is 2K × 3/8 ≤ number < 2K / 2? 

No Yes 

…  …  

…  



Binary representation of n 
(the more standard definition) 

  n = 2k bk + 2k-1 bk-1 + … + 2 b2 + b1 
 

where the b’s are either 0 or 1) 
 

The binary representation of n is: 
 ⎣n⎦2 = bk bk – 1 … b2 b1  
 
 



Efficiency of Effort:  
A lens on the world 
 
  QWERTY keyboard 
  “UPS Truck Driver’s Problem” (a.k.a.  

Traveling Salesman Problem or TSP) 
  CAPTCHA’s 
  Quantum computing 

 

[Jim Loy] 



Can n particles do  2n  “operations” in a single step? 
Or is Quantum Mechanics not quite correct? 

SIAM J.  
Computing 
26(5) 1997 

Computational efficiency has a bearing on physical theories. 


