Telling a computer how to behave

(via pseudocode -- a workaround for Computing' s Tower of Babel.)

COS 116, Spring 2012
Adam Finkelstein

Today's theme

Pin All Your Romantic Hopes on Google

When you think about it, love is just another search problem. And we've thought about it. A lot. Google Romance ${ }^{T M}$ is our solution.

Google Romance is a place where you can post all types of romantic information and, using our Soulmate Search ${ }^{\text {TM }}$, get back search results that could, in theory, include the love of your life. Then we'll send you both on a Contextual Date ${ }^{\text {TM }}$, which we'll pay for while delivering to you relevant ads that we and our advertising partners think will help produce the dating results you're looking for.

With Google Romance, you can:

Take the tour

Post your
Google Romance profile
Post multiple profiles with a bulk upload file, you sleaze

- Upload your profile - tell the world who you are, or, more to the point, who you'd like to think you are, or, even more to the point, who you want others to think you are.
- Search for love in all (or at least a statistically significant majority of) the right places with Soulmate Search, our eerily effective psychographic motrhmatinn anftinorn
When you do a Soulmate Search, your deeply personal and potentially life-altering search results are produced solely by computer algorithm, without human intervention of any kind.

human intervention of any kind.
Note: depending on your personality, you may or may not find this reassuring.

User B: "I never thought l'd be writing an online dating testimonial.

Intil

Algorithm

- A precise unambiguous procedure for accomplishing a task
- Named for Abu Abdullah Muhammad bin Musa al-Khwarizmi
\square His book "Al-Jabr wa-al-Muqabilah" evolved into today's high school algebra text.
- Examples: recipe, long division, selection sort.

Example: Adding two numbers

Imagine you are describing this task to somebody who has never done it.

How would you describe it?

How can we describe an algorithm precisely enough so there is no ambiguity?

Scribbler

Obstacle sensor emitter

Scribbler's "Language"

- Several types of simple instructions
\square E.g. "Move forward for 1 s "
- Two types of compound instructions

Loop
Do 5 times
\{
List of instructions
\}

Scribbler language illustrates essential features of all computer languages

Features of human languages: nouns/verbs/subjects/objects, etc.

Features of computer languages: variables, simple arithmetic instructions, conditional/loop statements

For a computer, everything's a number

Audio waveform

Sequence of Numbers representing frequency, amplitude, etc.

Image

Sequence of Numbers representing color value of each pixel.

General task faced by computer

$$
\begin{array}{|c|c|c|c|c|}
\hline 40.99 & 62.99 & 52.99 & \ldots & 22.99 \\
\hline
\end{array}
$$

Given: Sequence of numbers in memory (eg, mp3 song)
Goal: Process these numbers to achieve a desired sequence of numbers as output (eg, electrical signals that drive the headphones and reproduce the song)

A simple problem

- Our robot is getting ready for a big date...

- How would it identify the cheapest bottle? (Say it can pick up a bottle \& scan prices.)

Solution

- Pick up first bottle, check price
- Walk down aisle. For each bottle, do this:
-lf price on bottle is less than price in hand, exchange it with the one in hand.

Similar question in different setting

- Robot has n prices stored in memory
- Want to find minimum price

Memory: a simplified view

- A scratchpad that can be perfectly erased and re-written any number of times
- A variable: a piece of memory with a name; stores a "value"

Examples

$$
i \leftarrow 5 \quad \text { Sets } i \text { to value } 5
$$

$$
j \leftarrow i \quad \begin{aligned}
& \text { Sets } j \text { to whatever value is in } i . \\
& \text { Leaves } i \text { unchanged }
\end{aligned}
$$

$$
i \leftarrow j+1 \quad \begin{aligned}
& \text { Sets } i \text { to } j+1 \\
& \text { Leaves } j \text { unchanged }
\end{aligned}
$$

$i \leftarrow i+1 \quad$ Sets i to 1 more than it was.

Arrays

- A is an array of n values $A[i]$ is the i ' th value

- Example: $A[3]=52.99$

Solution

- Pick up first bottle, check price
- Walk down aisle. For each bottle, do this:
-lf price on bottle is less than price in hand, exchange it with the one in hand.

Procedure findmin

- n items, stored in array A
- Variables are i, best

Another way to do the same

```
best \leftarrow 1;
i}\leftarrow
Do while (i < n)
{
\[
\begin{aligned}
& i \leftarrow i+1 ; \\
& \text { if }(A[i]<A[\text { best }]) \text { then } \\
& \quad \text { best } \leftarrow i
\end{aligned}
\]
\}
```


New problem for robot: sorting

Arrange them so prices increase from left to right.

I have to sort n bottles.
Let me find the cheapest bottle and move it to leftmost position. Then I only have to the other bottles to its right.

Solution

Do for $i=1$ to $n-1$
\{
Find cheapest bottle among those numbered i to n
Swap that bottle and the i ' th bottle. \}

Note: we know how to do this!

"selection sort"

Swapping

- Suppose x and y are variables. How do you swap their values?

■ Need extra variable!

$$
\begin{aligned}
& t m p \leftarrow x \\
& x \leftarrow y \\
& y \leftarrow t m p
\end{aligned}
$$

Love, Marriage \& Broken Hearts

Standard disclaimer.

Stable Matching Problem

Problem:

Given N men \& N women, find "suitable" matching
\square Everyone lists their preferences from best to worst.

Stable Matching Problem

Problem:

Given N men \& N women, find "suitable" matching
\square Everyone lists their preferences from best to worst.

Women's Preference List						
Woman	1 st	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	
Amy	Zeus	Victor	Wyatt	Yancey	Xavier	
Bertha	Xavier	Wyatt	Yancey	Victor	Zeus	
Clare	Wyatt	Xavier	Yancey	Zeus	Victor	
Diane	Victor	Zeus	Yancey	Xavier	Wyatt	
Erika	Yancey	Wyatt	Zeus	Xavier	Victor	

Stable Matching Problem

- What do we mean by "suitable"?
\square PERFECT: everyone matched monogamously.
\square STABILITY: no incentive for some pair to elope.
- a pair that is not matched with each other is UNSTABLE if they prefer each other to current partners
- unstable pair: improve by dumping spouses and eloping

■ STABLE MATCHING (Gale and Shapley, 1962)
= perfect matching with no unstable pairs.

Example

Men's Preference List			
Man	1 $^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	A	B	C
Yancey	B	A	C
Zeus	A	B	C

Women' s Preference List

Woman	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Y	X	Z
Bertha	X	Y	Z
Clare	X	Y	Z

- Lavender assignment is a perfect matching. Are there any unstable pairs?

Q Yes. Bertha and Xavier form an unstable pair.
 They would prefer each other to current partners.

Example

Men' s Preference List			
Man	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	A	B	C
Yancey	B	A	C
Zeus	A	B	C

Women' s Preference List

Woman	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Y	X	Z
Bertha	X	Y	Z
Clare	X	Y	Z

■ Green assignment is a stable matching.

Example

| Men's Preference List |
| :---: | :---: | :---: | :---: |
| Man $1^{\text {st }}$ $2^{\text {nd }}$
 $3^{\text {rd }}$
 Xavier A B
 C
 Yancey B A
 Ceus A B |

Women's Preference List

Woman	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Y	X	Z
Bertha	X	Y	Z
Clare	X	Y	Z

- Gray assignment is also a stable matching.

Propose-And-Reject Algorithm

- Guarantees a stable matching.

Gale-Shapley Algorithm (men propose)

Initialize each person to be free.
while (some man m is free and hasn't proposed to every woman)
\{
$w=$ first woman on m 's list to whom he has not yet proposed
if (w is free)
assign m and w to be engaged
else if (w prefers m to her fiancé f)
assign m and w to be engaged, and f to be free
else
w rejects m
\}

Extensions

-Unacceptable partners
\square Every woman is not willing to marry every man, and vice versa.
\square Some participants declare others as "unacceptable."
-Sets of unequal size
\square Unequal numbers of men and women, e.g. 100 men \& 90 women
-Limited Polygamy
$\square e . g .$, Bill wants to be matched with 3 women.

Matching Residents to Hospitals

■ Hospitals ~ Men (limited polygamy allowed).

- Residents ~ Women (more than hospitals)
- Started just after WWII (before computer usage).
- Ides of March, 13,000+ residents are matched.
- Rural hospital dilemma.
\square Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
\square How to find stable matching that benefits rural hospitals?

Homework for next Thurs

(email your answers to pu.cos116@gmail.com by 2/23 noon as part of HW2)

- Write out pseudocode for selection sort.
- Try Gale-Shapley algorithm for previously-shown Amy-Erica / Victor-Zeuss preference lists, but vary the order of choosing man m. Does this affect the outcome?
- Try the version where women propose. Does this affect the outcome?
- Bonus question: Try to justify this statement: When the Gale-Shapley algorithm finishes, there are no unstable pairs.

Lessons Learned

- Powerful ideas learned in computer science.
- Sometimes deep social ramifications.
\square Hospitals and residents...
\square Historically, men propose to women.
Why not vice versa?
\square Computer scientists get the best partners!!!

Thursday: the perfect storm...

