Telling a robot how to behave

Adam Finkelstein COS 116: Spring 2012

Today: Understanding a simple robot

Why?

• Larger goal: seek an answer to

"What is Computation?"

- Acquire insight into technology that will become pervasive within the next decade.
- First encounter with many themes of the course.

Robots in pop culture

Real robots

Discussion...

Mars rover: what are the design principles?

Definition of "Robot":

- A machine that can be programmed to interact with the physical environment in a desired way
- Key word: *programmed* As opposed to cars, televisions, which are operated by people

Components of a robot

Three stages:

1. Sensors/Inputs: light, sound, motion...

2. Computing Hardware

3. Outputs/Actions: motors, lights, speakers...

Our robot: Scribbler

Obstacle sensor detector

Scribbler inside

Formal specification of actions

Fact of life in computing: hardware is "dumb"

Forces us to make nebulous concepts precise
 What is language? Music? Intelligence?

Running themes:

- □ What is machine "intelligence"?
- Are there limits?

Controlling Scribbler

File Edit Tools Mode Help	
Motor LED Pause Sound If <condition> Then Else Do End Program Basic Motor Control</condition>	Move Forward for 1s Pause 0.5s Move Back for 1s END
Forward Reverse Left Turn Right Turn Left Spin Right Spin	

Remember (esp. for Scribbler labs):

Microprocessor can do one thing at a time

□ Very fast -- 20 million operations per second!

□ Compound instructions: sequence within {…}

Why programmable?

Benefits of a programmable device:
 Flexible
 Multi-use
 Universal

Main difference between computers and other technologies

Our robot: Scribbler

Obstacle sensor detector

Example 1: As a burglar alarm

If beam interrupted...

Example 2: As an artiste

Interesting note: Scribbler is more stupid than you think

```
Do forever
{
Move Forward for 1s
Move back for 1s
}
END
```

"Translator" written by Rajesh Poddar '08

3 pages of stuff like

GOTO Main

```
SenseObs:

FREQOUT ObsTxLeft, 1, 38500

IF (ObsRx = 0) THEN object_left = 1 ELSE

object_left = 0

LOW ObsTxLeft

FREQOUT ObsTxRight, 1, 38500

IF (ObsRx = 0) THEN object_right = 1 ELSE

object_right = 0

LOW ObsTxRight

RETURN
```

SenseLine: HIGH LineEnable line_right = LineRight line_left = LineLeft LOW LineEnable

Where are things going?

"Small cleaning agents" – Brooks

Where are things going?

Automated highways

(From Minority Report)

Being actively researched

Where are things going?

DARPA Grand Challenge (\$2 M prize):

- 132 mile race in the desert
- No human control!
- 5 teams, Stanford won in
 7 hours

The Princeton Entry

Undergraduate Project; reached the finals

Where are we going?

What is going inside us?

- "Da Vinci" Robotic surgery system
- More precise, though often still controlled by human

Why are multi-purpose robots so hard to build?

- Need precise instruments that act like: eyes, ears, hands, fingers, ...
- Need smart ways to use sensor data (ex: human eyesight vs. high-res camera)

TO DO's

1. Reading: Brooks pp 12-21, pp 32-51

2. Lab: Web 2.0

3. Homework 1: Survey

Flesh and Machines How Perform will Change Us Prooks ** been that will been interess user process note beening searcess.*-

(All posted on course web page.)