

Distance-Vector and Path-Vector Routing

Sections 4.2.2., 4.3.2, 4.3.3

COS 461: Computer Networks
Spring 2011

Mike Freedman

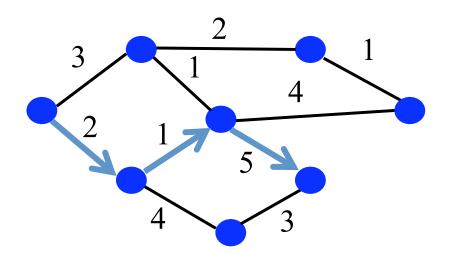
http://www.cs.princeton.edu/courses/archive/spring11/cos461/

Goals of Today's Lectures

- Distance-vector routing
 - Pro: Less information than link state
 - Con: Slower convergence
- Path-vector routing
 - Faster convergence than distance vector
 - More flexibility in selecting paths
- Different goals / metrics if inter- or intra-domain

Distance Vector: Still Shortest-Path Routing

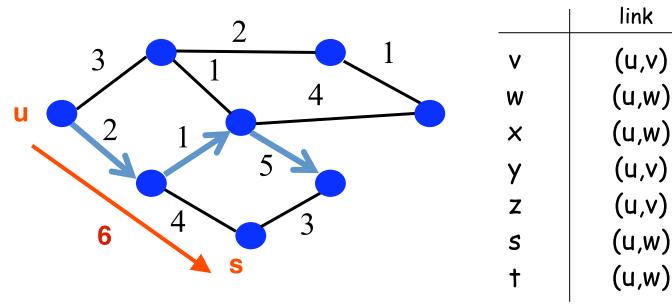
- Path-selection model
 - Destination-based
 - Load-insensitive (e.g., static link weights)
 - Minimum hop count or sum of link weights



Shortest-Path Problem

- Compute: path costs to all nodes
 - From a given source u to all other nodes
 - Cost of the path through each outgoing link
 - Next hop along the least-cost path to s

Ex) Forwarding table at u



Comparison of Protocols

Link State

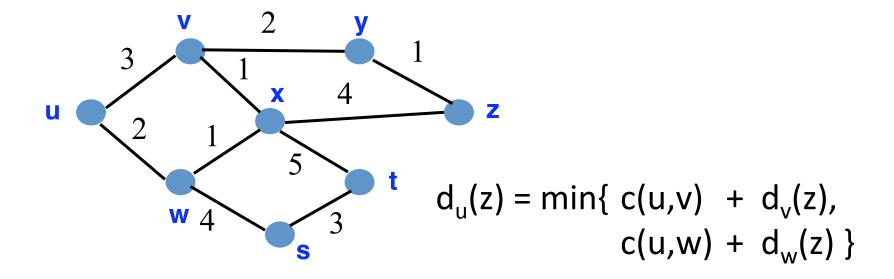
- Knowledge of every router's links (entire graph)
- Every router has O(# edges)
- Trust a peer's info, do routing computation yourself
- Use Dijkstra's algorithm
- Send updates on any linkstate changes
- Ex: OSPF, IS-IS
- Adv: Fast to react to changes

Distance Vector

- Knowledge of neighbors' distance to destinations
- Every router hasO (#neighbors * #nodes)
- Trust a peer's routing computation
- Use Bellman-Ford algorithm
- Send updates periodically or routing decision change
- Ex: RIP, IGRP
- Adv: Less info & lower computational overhead

Bellman-Ford Algorithm

- Define distances at each node x
 - $d_x(y) = cost of least-cost path from x to y$
- Update distances based on neighbors
 - $-d_x(y) = min \{c(x,v) + d_v(y)\}$ over all neighbors v



Distance Vector Algorithm

- Node x maintains state:
 - -c(x,v) = cost for direct link from x to neighbor v
 - Distance vector $D_x(y)$ (estimate of least cost x to y) for *all* nodes y
 - Distance vector $D_v(y)$ for each neighbor v, for all y
- Node x periodically sends D_x to its neighbors v
 - Neighbors update their own distance vectors: $D_v(y) \leftarrow \min_x \{c(v,x) + D_x(y)\}$ for each node y ∈ N
- Over time, the distance vector D_x converges

Distance Vector Algorithm

Iterative, asynchronous:

Each local iteration by

- Local link cost change
- Distance vector update message from neighbor

Distributed:

- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or msg from neighbor)

recompute estimates

if distance to any destination has changed, *notify* neighbors

Distance Vector Example: Step 1

Optimum 1-hop paths

Та	ble for	·A	Table for B			
Dst	Cst	Нор	Dst	Cst	Нор	
A	0	A	A	4	A	
В	4	В	В	0	В	
С	∞	-	С	∞	-	
D	∞	-	D	3	D	
E	2	Е	Е	∞	_	
F	6	F	F	1	F	

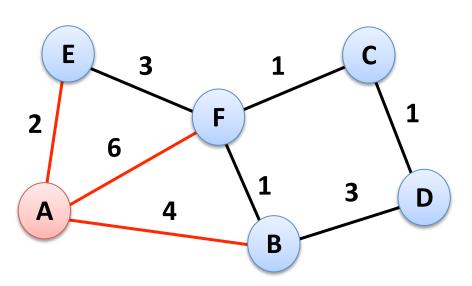


Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
A	∞	-	A	8	_	A	2	A	A	6	A
В	∞	-	В	3	В	В	∞	-	В	1	В
С	0	С	С	1	С	С	∞	_	С	1	С
D	1	D	D	0	D	D	∞	-	D	∞	_
Е	∞	_	Е	∞	_	Е	0	Е	Е	3	E
F	1	F	F	8	_	F	3	F	F	0	F

Distance Vector Example: Step 2

Optimum 2-hop paths

Та	ble for	·A	Table for B				
Dst	Cst	Нор	Dst	Cst	Нор		
A	0	A	A	4	A		
В	4	В	В	0	В		
C	7	F	С	2	F		
D	7	В	D	3	D		
E	2	E	Е	4	F		
F	5	Е	F	1	F		

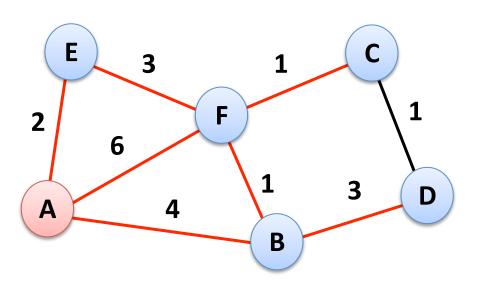


Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
A	7	F	A	7	В	A	2	A	A	5	В
В	2	F	В	3	В	В	4	F	В	1	В
С	0	С	С	1	С	С	4	F	С	1	С
D	1	D	D	0	D	D	∞	-	D	2	С
E	4	F	Е	∞	_	Е	0	Е	Е	3	E
F	1	F	F	2	С	F	3	F	F	0	F

Distance Vector Example: Step 3

Optimum 3-hop paths

Та	ble for	·A	Table for B			
Dst	Cst	Нор	Dst	Cst	Нор	
A	0	A	A	4	A	
В	4	В	В	0	В	
С	6	Е	С	2	F	
D	7	В	D	3	D	
E	2	Е	Е	4	F	
F	5	E	F	1	F	

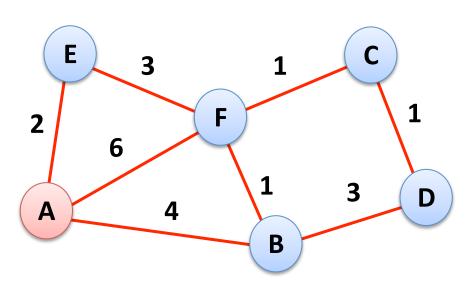
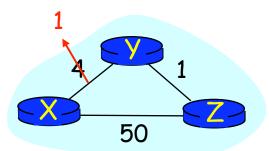


Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
A	6	F	A	7	В	A	2	A	A	5	В
В	2	F	В	3	В	В	4	F	В	1	В
C	0	С	С	1	С	С	4	F	С	1	С
D	1	D	D	0	D	D	5	F	D	2	С
E	4	F	Е	5	С	Е	0	Е	Е	3	E
F	1	F	F	2	С	F	3	F	F	0	F

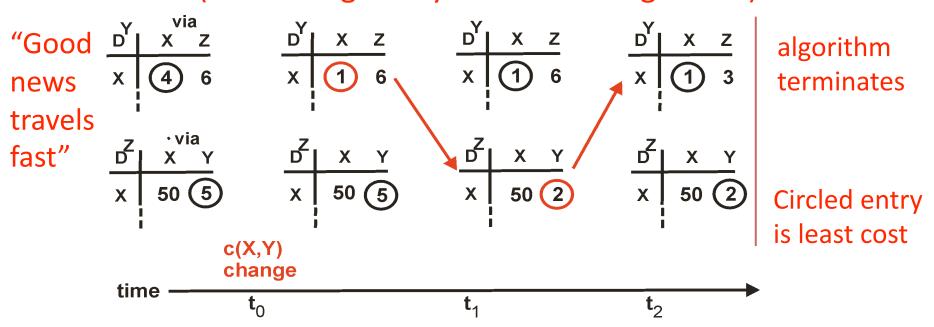
Distance Vector: Link Cost Changes

Link cost changes:

- Node detects local link cost change
- Updates the distance table
- If cost change in least cost path, notify neighbors



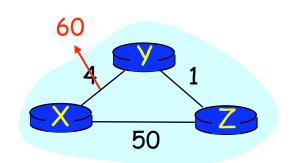
View of X (about neighbor y and z's routing tables)



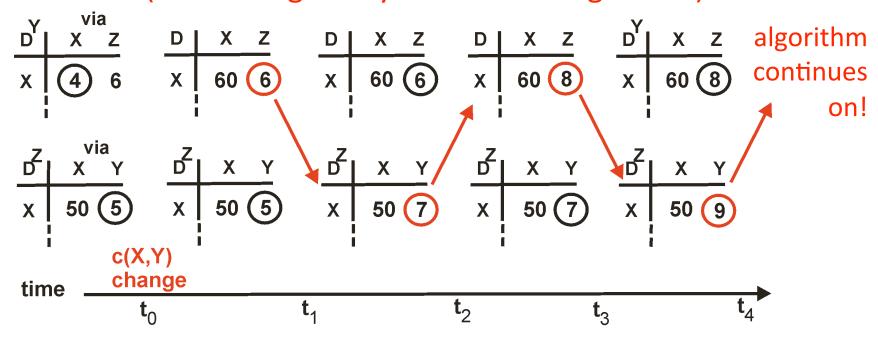
Distance Vector: Link Cost Changes

Link cost changes:

- Good news travels fast
- Bad news travels slow "count to infinity" problem!



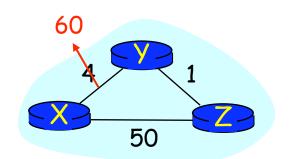
View of X (about neighbor y and z's routing tables)



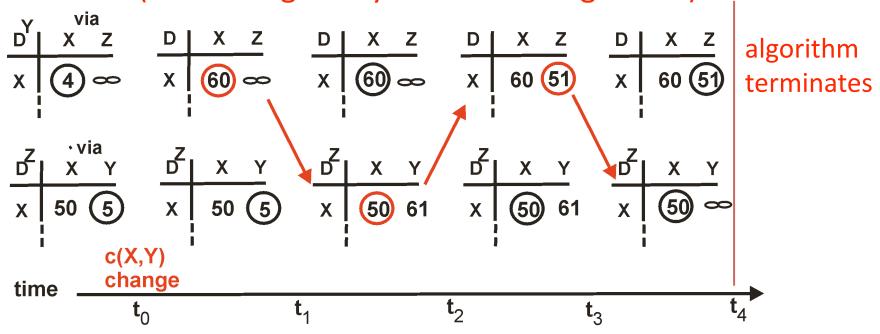
Distance Vector: Poison Reverse

If Z routes through Y to get to X:

- Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- Still, can have problems when more than 2 routers are involved



View of X (about neighbor y and z's routing tables)



Routing Information Protocol (RIP)

Distance vector protocol

- Nodes send distance vectors every 30 seconds
- ... or, when an update causes a change in routing

Link costs in RIP

- All links have cost 1
- Valid distances of 1 through 15
- ... with 16 representing infinity
- Small "infinity" → smaller "counting to infinity" problem

RIP is limited to fairly small networks

E.g., used in the Princeton campus network

Comparison of LS and DV Routing

Message complexity

- <u>LS</u>: with n nodes, E links,
 O(nE) messages sent
- <u>DV</u>: exchange between neighbors only

Speed of Convergence

- LS: relatively fast
- <u>DV</u>: convergence time varies
 - May be routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- Node can advertise incorrect link cost
- Each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- Each node's table used by others (error propagates)

Similarities of LS and DV Routing

Shortest-path routing

- Metric-based, using link weights
- Routers share a common view of how good a path is

As such, commonly used inside an organization

- RIP and OSPF are mostly used as intra-domain protocols
- E.g., Princeton uses RIP, and AT&T uses OSPF

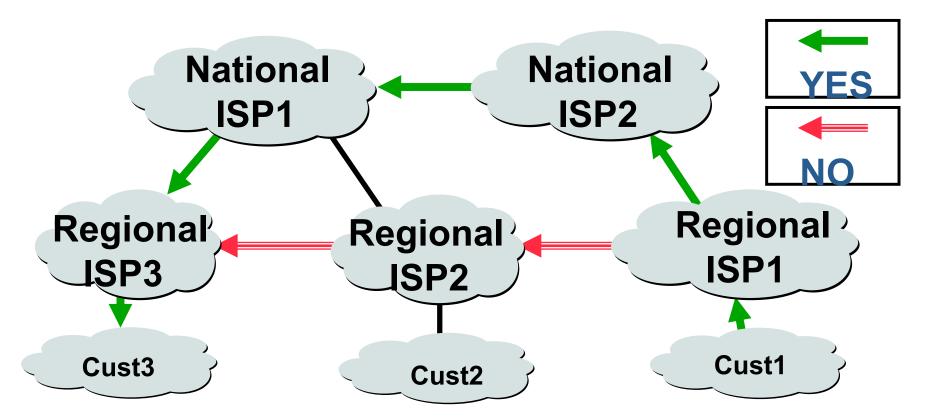
But the Internet is a "network of networks"

- How to stitch the many networks together?
- When networks may not have common goals
- ... and may not want to share information

Path-Vector Routing

Shortest-Path Routing is Restrictive

- All traffic must travel on shortest paths
- All nodes need common notion of link costs
- Incompatible with commercial relationships



Link-State Routing is Problematic

- Topology information is flooded
 - High bandwidth and storage overhead
 - Forces nodes to divulge sensitive information
- Entire path computed locally per node
 - High processing overhead in a large network
- Minimizes some notion of total distance
 - Works only if policy is shared and uniform
- Typically used only inside an AS
 - E.g., OSPF and IS-IS

Distance Vector is on the Right Track

Advantages

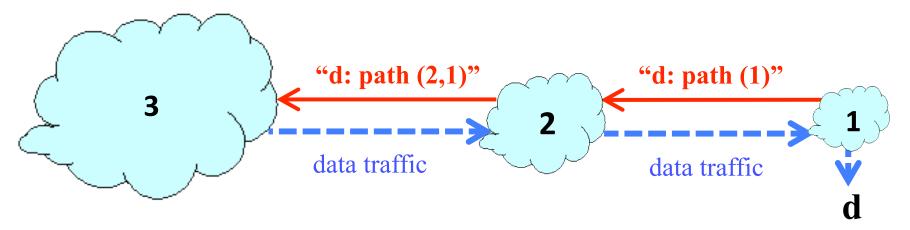
- Hides details of the network topology
- Nodes determine only "next hop" toward the dest

Disadvantages

- Minimizes some notion of total distance, which is difficult in an interdomain setting
- Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")
- Idea: extend the notion of a distance vector
 - To make it easier to detect loops

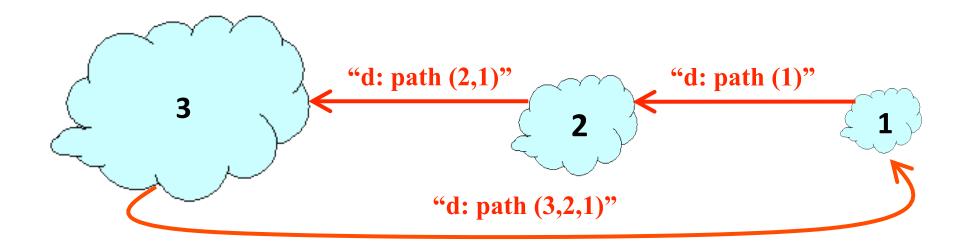
Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d



Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

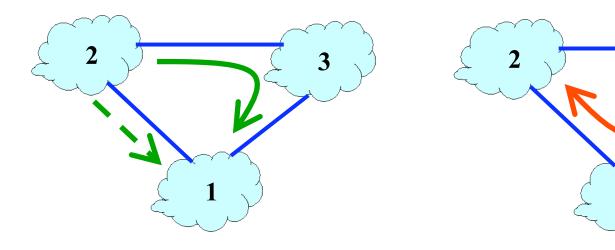


Flexible Policies

- Each node can apply local policies
 - Path selection: Which path to use?
 - Path export: Which paths to advertise?

Examples

- Node 2 may prefer the path "2, 3, 1" over "2, 1"
- Node 1 may not let node 3 hear the path "1, 2"



Conclusions

- Distance-vector routing
 - Pro: Less information and computation than link state
 - Con: Slower convergence (e.g., count to infinity)
- Path-vector routing
 - Share entire path, not distance: faster convergence
 - More flexibility in selecting paths
- Different goals / metrics if inter- or intra-domain
- Next week: BPG (path-vector protocol b/w ASes)