Distance-Vector and Path-Vector Routing

Sections 4.2.2.,4.3.2,4.3.3

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/springl1/cos461/

Goals of Today’s Lectures

* Distance-vector routing
— Pro: Less information than link state
— Con: Slower convergence

* Path-vector routing
— Faster convergence than distance vector
— More flexibility in selecting paths

 Different goals / metrics if inter- or intra-domain

Distance Vector:
Still Shortest-Path Routing

* Path-selection model
— Destination-based
— Load-insensitive (e.g., static link weights)
— Minimum hop count or sum of link weights

Shortest-Path Problem

 Compute: path costs to all nodes
— From a given source u to all other nodes
— Cost of the path through each outgoing link
— Next hop along the least-cost path to s

Ex) Forwarding table at u
link

2
3 1 —@_ 1 Vv (u,v)
y 4 % w (uw)
X (u,w)
Y (uv)
y4 (u,v)
6 V S (u,w)
S t (uw)

Comparison of Protocols

Link State

Knowledge of every router’s
links (entire graph)

Every router has
O(# edges)

Trust a peer’s info, do routing
computation yourself
Use Dijkstra’s algorithm

Send updates on any link-
state changes

Ex: OSPF, IS-1S
Adv: Fast to react to changes

Distance Vector

Knowledge of neighbors’
distance to destinations

Every router has
O (#neighbors * #nodes)

Trust a peer’s routing
computation

Use Bellman-Ford algorithm

Send updates periodically or
routing decision change

Ex: RIP, IGRP

Adv: Less info & lower
computational overhead

Bellman-Ford Algorithm

e Define distances at each node x
— d,(y) = cost of least-cost path from xtoy

* Update distances based on neighbors
— d,(y) = min {c(x,v) + d (y)} over all neighbors v

m s d,(z) = min{ c(u,v) + d,(z),

s c(u,w) + d,(z) }

Distance Vector Algorithm

* Node x maintains state:
— ¢(x,v) = cost for direct link from x to neighbor v

— Distance vector D,(y) (estimate of least cost x to y)
for all nodesy

— Distance vector D (y) for each neighbor v, for all y

* Node x periodically sends D, to its neighbors v
— Neighbors update their own distance vectors:
D,(y) ¢ min {c(v,x) + D,(y)} foreachnodey€ N

* Over time, the distance vector D, converges

Distance Vector Algorithm

Iterative, asynchronous: Each node:

Each local iteration by
wait for (change in local link

cost or msg from neighbor)

* Distance vector update
message from neighbor l

* Local link cost change

recompute estimates
Distributed: l

* Each node notifies neighbors

£ dist t T
only when its DV changes It distance to any destination

has changed, notify neighbors

* Neighbors then notify their
neighbors if necessary ‘

Distance Vector Example: Step 1

Optimum 1-hop paths

Table for A Table for B
Dst Cst Hop Dst Cst Hop
A 0 A A 4 A
B 4 B B 0 B
C 00 - C 00 -
D © - D 3 D
E 2 E © -
F 6 F F 1 F
Table for C Table for D Table for E Table for F
Dst Cst Hop Dst Cst Hop Dst Cst Hop Dst Cst Hop
A © - A 0 - A 2 A A 6 A
B © - B 3 B B © - B 1 B
C 0 C C 1 C C © - C 1 C
D D D 0 D D % - D 0 -
E 00 - E 00 - E E 3
F 1 F F © - F F F 0 F

Distance Vector Example: Step 2

Optimum 2-hop paths

Table for A Table for B
Dst Cst Hop Dst Cst Hop
A 0 A A 4 A
B 4 B 0 B
C 7 F C 2 F
D 7 B D 3 D
E 2 E E 4 F
F 5 E F 1 F
Table for C Table for D Table for E Table for F
Dst Cst Hop Dst Cst Hop Dst Cst Hop Dst Cst Hop
A 7 F A 7 B A 2 A A 5 B
B 2 F B 3 B B 4 F B 1 B
C 0 C C 1 C C 4 F C 1 C
D 1 D D 0 D D © - D 2 C
E 4 F E © - E E 3 E
F 1 F F 2 C F F F 0 F

Distance Vector Example: Step 3

Optimum 3-hop paths

Table for A Table for B
Dst Cst Hop Dst Cst Hop
A 0 A A 4 A
B 4 B 0 B
C 6 E C 2 F
D 7 B D 3 D
E 2 E E 4 F
F 5 E F 1 F
Table for C Table for D Table for E Table for F
Dst Cst Hop Dst Cst Hop Dst Cst Hop Dst Cst Hop
A 6 F A 7 B A 2 A A 5 B
B 2 F B 3 B B 4 F B 1 B
C 0 C C 1 C C 4 F C 1 C
D 1 D D 0 D D 5 F D 2 C
E 4 F E 5 C E 0 E E 3 E
F 1 F F 2 C F 3 F F 0 F

12

Distance Vector: Link Cost Changes

Link cost changes:

e Node detects local link cost change

e Updates the distance table

1

= e

e |f cost change in least cost path, notify neighbors

View of X (about neighbor y and z’s routing tables)

HGOOd DYI XVIaZ DYI X Z DYI X Z DYl X Z
news X!@G X!@G X!®6 x!@3
travels = ' ! / '
fast” o X Y | x v £ x v] x v
x!so@ x!50@ x!so@ x!so@
c(X,Y)
_ change
time 6 t, G

50

algorithm
terminates

Circled entry
is least cost

13

Distance Vector: Link Cost Changes

Link cost changes: 60

1
e Good news travels fast % z
e Bad news travels slow - “count to 50

infinity” problem!

View of X (about neighbor y and z’s routing tables)

Y via Y .
D| X z D| X Z D| X z D| X z D| x z algorithm

ti
x:@s x!eo@ x| 60(®) x|eo(8 x|eo(® continues

[[: on!
F Xy F x Y\DZ X Y/DZ X Y\DZ X Y/

x:50@ xlso@ X.50® x:50® x:so@

1
c(X,Y)
change

time

ty t, t t; Y

14

Distance Vector: Poison Reverse
If Z routes through Y to get to X : 60

o Ztells Y its (Z’s) distance to X is infinite %
<3

(so Y won’t route to X via Z)
50

e Still, can have problems when more
than 2 routers are involved

View of X (about neighbor y and z’s routing tables)

Y via
D X Z D|] X Z D X Z D X Z D algorithm

X Z
X I@co X!‘oo X l‘co x| 60 (51) x| 60 B9 | terminates
| 1 1

F XY DZ|XY\DZXY/DZXY\DZXY

x:so@ x!50@ x|@ 61 x|@ 61 x|E) =

1 | 1 :
c(X,Y)
change

time

b

Routing Information Protocol (RIP)

e Distance vector protocol

— Nodes send distance vectors every 30 seconds
— ... or, when an update causes a change in routing

e Link costsin RIP

— All links have cost 1

— Valid distances of 1 through 15

— ... with 16 representing infinity

— Small “infinity” = smaller “counting to infinity” problem

* RIP is limited to fairly small networks
— E.g., used in the Princeton campus network

Comparison of LS and DV Routing

Message complexity Robustness: what happens
 LS: with n nodes, E links, if router malfunctions?
O(nE) messages sent LS:

— Node can advertise
incorrect link cost

* DV: exchange between
neighbors only

— Each node computes only

Speed of Convergence it< own table

* LS: relatively fast DV:

 DV: convergence time varies

. — DV node can advertise
— May be routing loops incorrect path cost

— Count-to-infinity problem — Each node’s table used by

others (error propagates)

Similarities of LS and DV Routing

* Shortest-path routing
— Metric-based, using link weights
— Routers share a common view of how good a path is

e As such, commonly used inside an organization

— RIP and OSPF are mostly used as intra-domain protocols
— E.g., Princeton uses RIP, and AT&T uses OSPF

* But the Internet is a “network of networks”
— How to stitch the many networks together?
— When networks may not have common goals
— ... and may not want to share information

Path-Vector Routing

Shortest-Path Routing is Restrictive

 All traffic must travel on shortest paths
* All nodes need common notion of link costs
* Incompatible with commercial relationships

. . -
National - y . National YES

~ ISP1 ISP2 P a—
 NO |

Regional Regional’ Regional -
M qgrz/ff ISP

_ Cust3 __cus2_ . Custt

Link-State Routing is Problematic

Topology information is flooded
— High bandwidth and storage overhead

— Forces nodes to divulge sensitive information

Entire path computed locally per node
— High processing overhead in a large network

Minimizes some notion of total distance

— Works only if policy is shared and uniform

Typically used only inside an AS
— E.g., OSPF and IS-IS

Distance Vector is on the Right Track

* Advantages
— Hides details of the network topology
— Nodes determine only “next hop” toward the dest

* Disadvantages

— Minimizes some notion of total distance, which is
difficult in an interdomain setting

— Slow convergence due to the counting-to-infinity
problem (“bad news travels slowly”)

 |dea: extend the notion of a distance vector
— To make it easier to detect loops

Path-Vector Routing

* Extension of distance-vector routing
— Support flexible routing policies

— Avoid count-to-infinity problem

e Key idea: advertise the entire path
— Distance vector: send distance metric per dest d
— Path vector: send the entire path for each dest d

Faster Loop Detection

* Node can easily detect a loop
— Look for its own node identifier in the path
— E.g., node 1 sees itself in the path “3, 2, 1”

* Node can simply discard paths with loops
— E.g., node 1 simply discards the advertisement

“d: path (2,1)” “d: path (1)”
S

“d: path (3,2,1)”)

Flexible Policies

* Each node can apply local policies
— Path selection: Which path to use?
— Path export: Which paths to advertise?

 Examples
— Node 2 may prefer the path “2, 3, 1” over “2, 1”
— Node 1 may not let node 3 hear the path “1, 2”

Conclusions

Distance-vector routing
— Pro: Less information and computation than link state
— Con: Slower convergence (e.g., count to infinity)

Path-vector routing
— Share entire path, not distance: faster convergence
— More flexibility in selecting paths

Different goals / metrics if inter- or intra-domain

Next week: BPG (path-vector protocol b/w ASes)

