COS 426
Computer Graphics
Princeton University`
Vladimir Kim (Vova)
Feb 11, 2011
Topics

• Morphing

[Beier 1992]

• Bilateral Filtering

[Paris 2008]
Morphing

• Beier and Neely, 1992:
 – Align facial features
 – Blend colors
Morphing

- Beier and Neely, 1992:
 - Align facial features
 - Blend colors

Why align features?
Morphing

- Beier and Neely, 1992:
 - Align facial features
 - Blend colors

Why align features?
Morphing: Align Features

• Associate primitives: e.g. lines
Morphing: Align Features

• Associate primitives: e.g. lines

• Move primitives so that they align (at some intermediate location) -> warp accordingly
Morphing: Align Features

• A simple case: 1 image, 1 primitive:
Morphing: Align Features

• A simple case: 1 image, 1 primitive:

Where this pixel should come from?

Original Image

Intermediate Location

P'Q'
PQ
Morphing: Align Features

• A simple case: 1 image, 1 primitive:

1. Find local coordinates: u,v
 $X = u \cdot PQ + v \cdot PQ^\perp$
Morphing: Align Features

• A simple case: 1 image, 1 primitive:

1. Find local coordinates: \(u, v \)
 \[X = P + u \cdot PQ + v \cdot PQ^\perp \]

2. Location in original image: \(X' = P' + u \cdot P'Q' + v \cdot P'Q'^\perp \)
Morphing: Align Features

• Multiple lines?

– Find $X' = X + w_1 \cdot d_1 + w_2 \cdot d_2$
Morphing: Align Features

• Multiple lines?

\[X' = X + w_1 \cdot d_1 + w_2 \cdot d_2 \]

- Find \(X' = X + w_1 \cdot d_1 + w_2 \cdot d_2 \)

\[= 0 \quad \neq 0 \]

Line 1 did not move
Morphing: Align Features

• Multiple lines?

\[
X' = X + w_1 \cdot d_1 + w_2 \cdot d_2
\]

\[\approx 0.6 \approx 0 \approx 0.4 \neq 0\]

Line 1 is longer and closer
Morphing

• Beier and Neely, 1992:
 – Align facial features
 – Blend colors
Topics

• Morphing

[Beier 1992]

• Bilateral Filtering

[Paris 2008]
Bilateral Filtering

Taken from
SIGGRAPH 2008 Course
http://people.csail.mit.edu/sparis/bf_course/

Input

Gaussian Blur

Bilateral Filtering
Bilateral Filtering

Taken from
SIGGRAPH 2008 Course
http://people.csail.mit.edu/sparis/bf_course/

Edge-preserving

Input

Gaussian Blur

Bilateral Filtering
Bilateral Filtering

• How?
Bilateral Filtering

- How?

\[h(x) = k_d^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi - x)s(\xi - x) d\xi \]
Bilateral Filtering

- How?

\[h(x) = k_d^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi - x)s(\xi - x) d\xi \]

Filtered value at pixel x
Bilateral Filtering

- How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi - x)s(\xi - x) d\xi \]

Filtered value at pixel x
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image

Value at a pixel
Bilateral Filtering

• How?

\[h(x) = \frac{1}{Ka} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?
Bilateral Filtering

• How?

\[h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

- Filtered value at pixel \(x \)
- Later
- Go over every pixel \(\xi \) in image
- Value at a pixel
- Is pixel close to \(x \)?
- Is pixel similar to \(x \)?
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Later

Filtered value at pixel \(x \)

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Later

Filtered value at pixel x

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel similar to \(x \)?

Is pixel close to \(x \)?

Value at a pixel

Is pixel similar to \(x \)?

Is pixel close to \(x \)?
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) \, d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?
Bilateral Filtering

- How?

\[h(x) = \frac{1}{Kd} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi - x)s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?

\(\approx 1 \)

\(? \)

\(0 \)
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Later

Filtered value at pixel \(x \)

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?

\(x \)

\(\xi \)
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel similar to \(x \)?

Is pixel close to \(x \)?
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Later

Filtered value at pixel \(x \)

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?

\(\approx 1 \)

\(\approx 1 \)

\(\approx 0 \)

EDGE!
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K_d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Go over every pixel \(\xi \) in image

Value at a pixel

Later

Is pixel close to \(x \)?

Is pixel similar to \(x \)?
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K_d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?

\[\approx 0 \quad \text{(FAR!)} \]

\[\approx 0 \]

\[\approx 1 \]
Bilateral Filtering

• How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel \(x \)

Later

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel similar to \(x \)?

Is pixel close to \(x \)?
Bilateral Filtering

- How?

\[h(x) = \frac{1}{K} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Later

Filtered value at pixel \(x \)

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?

\(\approx 1 \)

\(\approx 0 \)

FAR!

\(\approx 0 \)

EDGE!
Bilateral Filtering

• How?

\[h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Later

Filtered value at pixel \(x \)

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel close to \(x \)?

Is pixel similar to \(x \)?

\[c(\xi - x) = e^{-\frac{1}{2} \left(\frac{\|\xi - x\|}{\sigma_d} \right)} \]

\[s(\xi - x) = e^{-\frac{1}{2} \left(\frac{\|f(\xi) - f(x)\|}{\sigma_r} \right)} \]
Bilateral Filtering

• How?

$$h(x) = k_d^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi$$

Filtered value at pixel x

Go over every pixel ξ in image

Value at a pixel

Is pixel close to x?

Is pixel similar to x?

Normalization:

$$k(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(\xi - x) s(\xi - x) d\xi$$
Bilateral Filtering

• In Practice?

\[h(x) = \frac{1}{kd} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi \]

Filtered value at pixel x

Go over every pixel \(\xi \) in image

Value at a pixel

Is pixel similar to \(x \)?

Is pixel close to \(x \)?

Normalization
Questions?

- Morphing

[Beier 1992]

- Bilateral Filtering

[Paris 2008]