COS 426 Computer Graphics Princeton University`

Vladimir Kim (Vova) Feb 11, 2011

Topics

Morphing

[Beier 1992]

Bilateral Filtering

[Paris 2008]

- Beier and Neely, 1992:
 - Align facial features
 - Blend colors

- Beier and Neely, 1992:
 - Align facial features
 - Blend colors

Why align features?

- Beier and Neely, 1992:
 - Align facial features
 - Blend colors

Why align features?

• Associate primitives: e.g. lines

Associate primitives: e.g. lines

 Move primitives so that they align (at some intermediate location) -> warp accordingly

• A simple case: 1 image, 1 primitive:

• A simple case: 1 image, 1 primitive:

A simple case: 1 image, 1 primitive:

Find local coordinates: u,v
 X=u•PQ+v•PQ[⊥]

A simple case: 1 image, 1 primitive:

- Find local coordinates: u,v
 X=P + u•PQ+v•PQ[⊥]
- 2. Location in original image: X'=P' + u•P'Q'+v•P'Q'[⊥]

Source Image

Multiple lines?

- Find X'=X +
$$w_1 \cdot d_1 + w_2 \cdot d_2$$

Multiple lines?

- Find X'=X +
$$w_1 \cdot d_1 + w_2 \cdot d_2$$
 $=0$

Line 1 did not move

Multiple lines?

- Find X'=X +
$$w_1 \bullet d_1 + w_2 \bullet d_2$$
 $\overline{\approx .6}$

Line 1 is longer and closer

- Beier and Neely, 1992:
 - Align facial features
 - Blend colors

Topics

Morphing

[Beier 1992]

Bilateral Filtering

[Paris 2008]

Taken from SIGGRAPH 2008 Course http://people.csail.mit.edu/sparis/bf_course/

Input

Gaussian Blur

Bilateral Filtering

Input

Gaussian Blur

Taken from SIGGRAPH 2008 Course http://people.csail.mit.edu/sparis/bf_course/

Edge-preserving

Bilateral Filtering

• How?

$$h(x) = k_d^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi - x)s(\xi - x)d\xi$$

How?

$$h(x) = k_d^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi - x)s(\xi - x)d\xi$$

Filtered value at pixel x

How?

$$h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi - x)s(\xi - x)d\xi$$
 Filtered value

at pixel x

$$h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi$$
 Filtered value at pixel x Go over every pixel ξ in image

$$h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi-x)s(\xi-x)d\xi$$
 Filtered value at pixel x Go over every pixel ξ in image

$$h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi$$
 Filtered value at pixel x Go over every pixel ξ in image Is pixel close to x ?

$$h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi$$
 Filtered value at pixel x Go over every pixel ξ in image Is pixel close to x ?

$$h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi$$
 Filtered value at pixel x Go over every pixel ξ in image Is pixel close to x ?

$$h(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi-x)s(\xi-x)d\xi$$
 Filtered value at pixel x Go over every pixel ξ in image Is pixel close to x ?

$$h(x) = \lim_{\text{Later}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) c(\xi - x) s(\xi - x) d\xi$$
 Filtered value at pixel x Go over every pixel ξ in image Is pixel close to x ?

$$c(\xi - x) = e^{-\frac{1}{2}\left(\frac{\|\xi - x\|}{\sigma_d}\right)}$$

$$s(\xi - x) = e^{-\frac{1}{2}\left(\frac{\|f(\xi) - f(x)\|}{\sigma_r}\right)}$$

$$k(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(\xi - x)s(\xi - x)d\xi$$

Questions?

Morphing

[Beier 1992]

Bilateral Filtering

[Paris 2008]